Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 3 of 3 results for Huntington's disease

Show: 10 · 20 · 50

  1. 1
  • Christopher A. Ross Lab

    Dr. Ross and his research team have focused on Huntington's disease and Parkinson's disease, and now are using insights from these disorders to approach more complex diseases such as schizophrenia and bipolar disorder. They use biophysical and biochemical techniques, cell models, and transgenic mouse models to understand disease processes, and to provide targets for development of rational therapeutics. These then can provide a basis for developing small molecule interventions, which can be used both as probes to study biology, and if they have favorable drug-like properties, for potential therapeutic development. We have used two strategies for identifying lead compounds. The first is the traditional path of identification of specific molecular targets, such as enzymes like the LRRK2 kinase of Parkinson’s disease. Once structure is known, computational approaches or fragment based lead discovery, in collaboration, can be used. The second is to conduct phenotypic screens using ce...ll models, or in a collaboration, natural products in a yeast model. Once a lead compound is identified, we use cell models for initial tests of compounds, then generate analogs, and take compounds that look promising to preclinical therapeutic studies in animal models. The ultimate goal is to develop therapeutic strategies that can be brought to human clinical trials, and we have pioneered in developing biomarkers and genetic testing for developing strategies. view more

    Research Areas: psychiatric disorders

  • Solomon Snyder Laboratory

    Information processing in the brain reflects communication among neurons via neurotransmitters. The Solomon Snyder Laboratory studies diverse signaling systems including those of neurotransmitters and second messengers as well as the actions of drugs upon these processes. We are interested in atypical neurotransmitters such as nitric oxide (NO), carbon monoxide (CO), and the D-isomers of certain amino acids, specifically D-serine and D-aspartate. Our discoveries are leading to a better understanding of how certain drugs for Parkinson's disease and Hungtington's disease interact with cells and proteins. Understanding how other second messengers work is giving us insight into anti-cancer therapies.

    Research Areas: Huntington's disease, amino acids, neurotransmitters, brain, cancer, nitric oxide, drugs, carbon monoxide, Parkinson's disease, nervous system

  • Translational Neurobiology Laboratory

    The goals of the Translational neurobiology Laboratory are to understand the pathogenesis and cell death pathways in neurodegenerative disorders to reveal potential therapeutic targets for pharmaceutical intervention; to investigate endogenous survival pathways and try to induce these pathways to restore full function or replace lost neurons; and to identify biomarkers to mark disease function or replace lost neurons; and to identify biomarkers to mark disease progression and evaluate therapeutics. Our research projects focus on models of Huntington's disease and Parkinson's disease. We use a combination of cell biology and transgenic animal models of these diseases.

    Research Areas: Huntington's disease, neurodegenerative disorders, neurobiology, cell biology, Parkinson's disease

  1. 1