Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 28 results for DNA

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • Andrew Feinberg Laboratory

    The Feinberg Laboratory studies the epigenetic basis of normal development and disease, including cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer.

    Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism.

    Research Areas: autism, cancer, epigenetics, schizophrenia, human development, aging, DNA, genomics, neuropsychiatric disease

    Lab Website

    Principal Investigator

    Andrew Feinberg, M.D., M.P.H.

    Department

    Medicine

  • Beer Lab

    The goal of research in the Beer Lab is to understand how gene regulatory information is encoded in genomic DNA sequence. Our work uses functional genomics DNase-seq, ChIP-seq, RNA-seq, and chromatin state data to computationally identify combinations of transcription factor binding sites that operate to define the activity of cell-type specific enhancers. We are currently focused on improving SVM methodology by including more general sequence features and constraints predicting the impact of SNPs on enhancer activity (delta-SVM) and GWAS association for specific diseases, experimentally assessing the predicted impact of regulatory element mutation in mammalian cells, systematically determining regulatory element logic from ENCODE human and mouse data, and using this sequence based regulatory code to assess common modes of regulatory element evolution and variation.

    Research Areas: computational biology, biomedical engineering, DNA, genomics, RNA

  • Berger Lab

    The Berger Lab's research is focused on understanding how multi-subunit assemblies use ATP for overcoming topological challenges within the chromosome and controlling the flow of genetic information. A long-term goal is to develop mechanistic models that explain in atomic level detail how macromolecular machines transduce chemical energy into force and motion, and to determine how cells exploit and control these complexes and their activities for initiating DNA replication, shaping chromosome superstructure and executing myriad other essential nucleic-acid transactions.

    Our principal approaches include a blend of structural (X-ray crystallography, single-particle EM, SAXS) and solution biochemical methods to define the architecture, function, evolution and regulation of biological complexes. We also have extensive interests in mechanistic enzymology and the study of small-molecule inhibitors of therapeutic potential, the development of chemical approaches to trapping weak protein/p...rotein and protein/nucleic acid interactions, and in using microfluidics and single-molecule approaches for biochemical investigations of protein dynamics. view more

    Research Areas: biochemistry, proteomics, ATP, DNA, genomics

  • Best Laboratory

    The Best Laboratory focus on therapeutic vaccine development for HPV-related diseases by developing a murine model of papilloma analogous to Recurrent Respiratory Papillomatosis (RRP) for testing of DNA vaccine technology. We also work to understand the immunosuppressive tumor microenvironment that facilitates RRP development, and translate this work into novel therapies and clinical practice.

    Research Areas: Recurrent Respiratory Papillomatosis, HPV-related diseases, vaccines, Laryngeal papillomas, otolaryngology, papillomas, DNA vaccine technologies

  • Daniel Weinberger Laboratory

    The Daniel Weinberger Laboratory focuses on the neurobiological mechanisms of genetic risk for developmental brain disorders. We study the genetic regulation of the transcriptome in normal human brain across the human life span and in brains from patients with various psychiatric disorders. We also study the impact of genetic variation on aspects of human brain development and function linked with risk for schizophrenia and related psychiatric disorders. Our lab uses unique molecular and clinical datasets and biological materials from a large sample of families with affected and unaffected offspring and normal volunteers. These datasets include DNA, lymphoblast and fibroblast cell lines, and extensive quantitative phenotypes related to genetic risk for schizophrenia, including detailed cognitive assessments and various neuroimaging assays. In other research, we are working on a human brain transcriptome project that is RNA sequencing over 1,000 human brain samples in various regi...ons and based also on sorting of specific celliular phentypes. We are exploring the molecular processing of the gene and its implications for cognition and aspects of human temperament. view more

    Research Areas: neurobiology, brain, transcriptome, schizophrenia, psychiatric disorders, genomics, developmental disorders, RNA

  • Daria Gaykalova Lab

    The Daria Gakalova Lab defines the functional role of epigenetics in transcriptional regulation of head and neck squamous cell carcinoma (HNSCC) progression. To evaluate the whole-genome distribution of various histone marks, her team is using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq) for primary tissues, a method recently developed by her lab. The research group of Daria Gaykalova was the first to demonstrate the cancer-specific distribution of H3K4me3 and H3K27ac marks and their role in cancer-related gene expression in HNSCC. The research showed that an aberrant chromatin alteration is a central event in carcinogenesis and that the therapeutic control of chromatin structure can prevent the primary of secondary cancerization. Further preliminary data suggest that the differential enrichment of these disease-specific histone marks and DNA methylation correlate with alternative splicing events (ASE) formation. For this project, Dr. Gaykalova... and her team employed a novel bioinformatical tool for the detection of cancer-specific ASEs. Through thorough functional validation of the individual ASEs, the lab demonstrated that each of them has a unique mechanism of malignant transformation of the cells. Due to high disease specificity, ASEs represent the perfect biomarkers of the neoantigens and have direct application to clinical practice. view more

    Research Areas: Head and neck squamous cell carcinoma, Human papillomavirus, Alternative splicing, epigenetics, Chromatin structure, Cancer genomics, head and neck cancer

  • David Sullivan Lab

    Research in the David Sullivan Lab focuses on malaria, including its diagnosis, treatment, molecular biology as it relates to iron, and pathology as it relates to severe anemia. We test and develop new malaria diagnostics — from real-time polymerase chain reaction (PCR) to novel urine and saliva detection platforms. This includes the adaptation of immuno-PCR (antibody coupled to DNA for PCR detection) to malaria and a lead blood stage drug that contains a quinine derivative used to treat malaria in the 1930s.

    Research Areas: molecular immunology, iron, anemia, malaria, molecular microbiology

    Principal Investigator

    David Sullivan, M.D.

    Department

    Medicine

  • DNA Diagnostic Lab

    Established in 1979, the Johns Hopkins DNA Diagnostic Laboratory is a CLIA and CAP certified; Maryland, New York, and Pennsylvania licensed clinical genetics testing laboratory specializing in rare inherited disorders. Led by renown professor of pediatrics and medical genetics Dr. Garry R. Cutting, the lab offers testing for a range of approximately 50 phenotypes and disorders totaling 3,500 tests annually.

    Research Areas: genetics, genetic sequencing, genetic counseling, rare inherited disorders

    Lab Website

    Principal Investigator

    Garry Cutting, M.D.

    Department

    Pediatrics

  • Gary S. Hayward Laboratory

    Research in the Gary S. Hayward Laboratory is related to human herpesvirus. Specifically, researchers are seeking to understand how the different classes of herpes viruses take control of transcription, DNA replication, cell cycle and other nuclear processes of their host cells and how they also block or evade apoptotic and immune responses in both the lytic and latent state.

    Research Areas: immunology, herpesvirus, pathogenesis, transcriptional regulation

    Lab Website

    Principal Investigator

    Gary Hayward, Ph.D.

    Department

    Oncology

  • GI Early Detection Biomarkers Lab

    Dr. Meltzer is an internationally renowned leader in the molecular pathobiology of gastrointestinal malignancy and premalignancy. He invented molecular methods to detect loss of heterozygosity in tiny biopsies, triggering an avalanche of research on precancerous lesions. He was the first to comprehensively study coding region microsatellite instability, leading to the identification of several important tumor suppressor genes. He performed several groundbreaking genomic, epigenomic and bioinformatic studies of esophageal and colonic neoplasms, shifting the GI research paradigm toward genome-wide approaches. He directed an ambitious nationwide validation study of DNA methylation-based biomarkers for the prediction of neoplastic progression in Barrett’s esophagus.

    Dr. Meltzer founded and led the Aerodigestive Cancer and Biomarker Interdisciplinary Programs at the University of Maryland, also becoming associate director for core sciences at that school’s Cancer Center. He currently hol...ds an endowed professorship and is the director of GI biomarker research at Johns Hopkins.

    The laboratory group focuses its efforts on the molecular genetics of gastrointestinal cancers and premalignant lesions, as well as on translational research to improve early detection, prognostic evaluation, and treatment of these conditions. Below, some examples of this work are described.
    view more

    Research Areas: gastrointestinal cancer, gastrointestinal

    Principal Investigator

    Stephen Meltzer, M.D.

    Department

    Medicine

  1. 1
  2. 2
  3. 3