Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 50 of 756 results

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Adam D. Sylvester Lab

    Research in the Adam D. Sylvester Lab primarily focuses on the way in which humans and primates move through the environment, with the aim of reconstructing the locomotor repertoire of extinct hominins and other primates. We use a quantitative approach that involves the statistical analysis of three-dimensional biological shapes, specifically musculoskeletal structures, and then link the anatomy to function and function to locomotor behavior.

    Research Areas: anatomy, biomechanics, locomotion, evolution, skeletal morphology

  • Adam Sapirstein Lab

    Researchers in the Adam Sapirstein Lab focus on the roles played by phospholipases A2 and their lipid metabolites in brain injury. Using in vivo and in vitro models of stroke and excitotoxicity, the team is examining the roles of the cytosolic, Group V, and Group X PLA2s as well as the function of PLA2s in cerebrovascular regulation. Investigators have discovered that cPLA2 is necessary for the early electrophysiologic changes that happen in hippocampal CA1 neurons after exposure to N-methyl-d-aspartate (NMDA). This finding has critical ramifications in terms of the possible uses of selective cPLA2 inhibitors after acute neurologic injuries.

    Research Areas: phospholipases A2, brain, stroke, lipid metabolites, excitotoxicity, brain injury, neurological disorders

  • Adrian Dobs Lab

    Researchers in the Adrian Dobs Lab study topics that include gonadal dysfunction, hyperlipidemia, diabetes mellitus, and the relationship between sex hormones and heart disease. We currently are investigating male gonadal function—with particular interest in new forms of male hormone replacement therapy—and hormonal changes related to aging.

    Research Areas: diabetes mellitus, hormones, hyperlipidemia, male gonadal function, cardiovascular diseases, endocrinology

    Principal Investigator

    Adrian Dobs, M.D., M.H.S.

    Department

    Medicine

  • Adult Cardiac Catheterization Laboratory

    Our group is interested in the evaluation of basic pathophysiology in patients undergoing cardiac procedures, development and evaluation of new therapeutic strategies, and improving patient selection and outcomes following interventional procedures.

    Research Areas: cardiac catheterization, Acute Myocardial Infarction

    Principal Investigator

    Jon Resar, M.D.

    Department

    Medicine

  • Advanced Optics Lab

    The Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.

    Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins.

    Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering

    Lab Website

    Principal Investigator

    Scot Kuo, Ph.D.

    Department

    Biomedical Engineering

  • Agrawal Lab

    The Agrawal Lab is focused on the medical and surgical treatment of otologic and neurotologic conditions. Research is focused on the vestibular system (the inner ear balance system), and how the function of the vestibular system changes with aging. Particular focus is given to study how age-related changes in vestibular function influence mobility disability and fall risk in older individuals.

    Research Areas: cognition, visuospatial ability, vertigo, aging, balance, vestibular system

  • Ahmet Gurakar Lab

    The Ahmet Gurakar Lab is interested in bioartificial liver dialysis systems and the application of total plasma exchange in the treatment of liver disorders.

    Research Areas: transplants, viral hepatitis, liver diseases, plasma exchange

    Principal Investigator

    Ahmet Gurakar, M.D.

    Department

    Medicine

  • Alain Labrique Lab

    The Alain Labrique Lab conducts research on infectious diseases and public health. Our team studies the various factors that lead to maternal and neonatal mortality, particularly in underserved populations in South Asia, using the tools of infectious disease epidemiology, molecular biology and biostatistics. We work to better understand factors such as the interface of micronutrient deficiency and maternal/infant mortality and the prevention of nosocomial infections through mechanistic or nutritional interventions. We also have a longstanding interest in technologies that may enable early detection of disease.

    Research Areas: epidemiology, mobile health, Hepatitis, neonatal, infectious disease, public health, biostatistics, nosocomial infections, molecular biology

  • Alan Baer Lab

    Research in the Alan Baer Lab focuses on Sjogren's syndrome. Previously, we conducted the Sjogren's International Registry (SICCA), enrolling 300 patients and creating a valuable source of clinical data and biospecimens for research we're conducting with colleagues at Johns Hopkins and the University of California-San Francisco. Currently, we're conducting a longitudinal observational study of patients with Sjogren's syndrome. We're also collaborating with Dr. Ben Larman in the Department of Pathology, using phage immuno-precipation sequencing to work on a characterization of the complete autoantibody repertoire in Sjogren's syndrome patients.

    Research Areas: autoantibodies, Sjogren's syndrome, autoimmune rheumatic diseases, observational data

    Principal Investigator

    Alan Baer, M.D.

    Department

    Medicine

  • Alan Scott Lab

    Research in the Alan Scott Lab involves several important areas of genomics. Our team collaborates on a study to investigate the exon and genome sequence variants that determine phenotype, with a specific focus on the genetic bases of cleft lip and palate. We are also involved in assessing and improving genomic technologies to provide next-generation sequencing and analysis of sequence data to the clinical environment. In addition, we have a longstanding interest in the problem of gene annotation and the evolutionary genomics of vertebrates, especially endangered species.

    Research Areas: evolutionary genomics, sequence analysis, genomics, genome annotation, genomic technologies, cleft lip and palate

    Principal Investigator

    Alan Scott, Ph.D.

    Department

    Medicine

  • Albert Lau Lab

    The Lau Lab uses a combination of computational and experimental approaches to study the atomic and molecular details governing the function of protein complexes involved in intercellular communication. We study ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels that mediate the majority of excitatory synaptic transmission in the central nervous system. iGluRs are important in synaptic plasticity, which underlies learning and memory. Receptor dysfunction has been implicated in a number of neurological disorders.

    Research Areas: central nervous system, synaptic plasticity, computational biology, intracellular communication, ionotropic glutamate receptors, neurological disorders

  • Alex Kolodkin Laboratory

    Research in the Alex Kolodkin Laboratory is focused on understanding how neuronal connectivity is established during development. Our work investigates the function of extrinsic guidance cues and their receptors on axonal guidance, dendritic morphology and synapse formation and function. We have investigated how neural circuits are formed and maintained through the action of guidance cues that include semaphorin proteins, their classical plexin and neuropilin receptors, and also novel receptors. We employ a cross-phylogenetic approach, using both invertebrate and vertebrate model systems, to understand how guidance cues regulate neuronal pathfinding, morphology and synaptogenesis. We also seek to understand how these signals are transduced to cytosolic effectors. Though broad in scope, our interrogation of the roles played by semaphorin guidance cues provides insight into the regulation of neural circuit assembly and function. Our current work includes a relatively new interest in ...understanding the origins of laminar organization in the central nervous system. view more

    Research Areas: central nervous system, neural circuits, neurodevelopment, neuronal connectivity, laminar organization

    Lab Website

    Principal Investigator

    Alex Kolodkin, Ph.D.

    Department

    Neuroscience

  • Alfredo Kirkwood Laboratory

    Research in the Alfredo Kirkwood Laboratory is directed toward elucidating the basic mechanisms by which visual experience can modify cortical connections in the visual cortex and how those mechanisms are regulated.

    In visual cortical slices, we investigate two forms of activity-dependent synaptic plasticity: long-term potentiation (LTP) and long-term depression (LTD). These two forms of synaptic plasticity are currently the most comprehensive models of the elementary mechanisms underlying naturally occurring plasticity. We are currently focused on how synaptic inhibition and the action of neuromodulators regulate the induction of LTP and LTD during development. We hope to gain a better understanding of how naturally occurring plasticity is regulated.

    Research Areas: synaptic plasticity, depression, vision, visual cortex, long-term potentiation

    Lab Website

    Principal Investigator

    Alfredo Kirkwood, M.S., Ph.D.

    Department

    Neuroscience

  • Aliaksei Pustavoitau Lab

    The Aliaksei Pustavoitau Lab conducts research on models and mechanisms of impaired consciousness in patients who have suffered acute brain injury. Examples of our work include a study on the mechanisms of neurologic failure in critical illness and another on the use of intensivist-driven ultrasound at the PICU bedside. We also have a longstanding interest in patient safety and quality of care in the ICU setting.

    Research Areas: patient safety, brain, consciousness, ICU, brain injury

  • Alicia Arbaje Lab

    Research in the Alicia Arbaje Lab aims to help older adults maintain dignity and quality of life as they age. We are particularly interested in creating health care systems to improve safety and outcomes for older adults.

    Research Areas: safety, gerontology, health care systems

    Principal Investigator

    Alicia Arbaje, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Alison E. Turnbull Lab

    Research in the Alison E. Turnbull Lab focuses on patient-clinician interactions. We study decision-making processes for ICU patients and their families and focus on the long-term outcomes of ICU survivors. Additional research examines ways to improve end-of-life care for patients.

    Research Areas: epidemiology, palliative care, medical decision making, ICU

  • Alison Miles Lab

    Research in the Alison Miles Lab focuses on moral distress among pediatric intensive care unit (PICU) clinicians. We have interviewed practitioners involved in the long-term care of patients in the PICU from two months to two years. By identifying the challenges of these cases and what was learned, we hope to develop more effective stress-management strategies for providers. Providers who have less stress are better equipped to care for patients, including those living with chronic diseases. Our team hopes to ultimately improve the field of pediatric palliative care for patients, families and care providers.

    Research Areas: stress, intensive care

  • Alison Moliterno Lab

    The Alison Moliterno Lab studies the molecular pathogenesis of myeloproliferative disorders (MPDs), including polycythemia vera, essential thrombocytosis and idiopathic myelofibrosis. Our research is focused on the genetic and epigenetic lesions associated with MPDs, with the goal of improving diagnosis and treatment for these disorders.

    Research Areas: blood disorders, idiopathic myelofibrosis, essential thrombocytosis, epigenetics, genomics, polycythemia vera, myeloproliferative disorders

    Principal Investigator

    Alison Moliterno, M.D.

    Department

    Medicine

  • Allan Gelber Lab

    The Allan Gelber Lab conducts research on the clinical epidemiology of rheumatic disorders. Our recent studies have explored topics that include the predicting factors of prevalent and incident gout; cardiovascular disease burden and risk in patients with rheumatoid arthritis; autoantibodies in both primary and secondary SjogrenÕs syndrome; and predictors of outcomes in patients with scleroderma. In addition, we have a long-standing interest in the ways in which racial differences affect disease manifestations in relation to rheumatic disorders.

    Research Areas: rheumatology, gout, Sjogren's syndrome, scleroderma, race, health disparities, rheumatoid arthritis

    Principal Investigator

    Allan Gelber, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Allan Gottschalk Lab

    Research in the Allan Gottschalk Lab focuses on the mechanisms behind neuropathic pain, chronic pain related to nerve injury. We are investigating biophysical models of the impact of general anesthesia on the central nervous system; informational aspects of sensory perception and the representation of sensory input; nonlinear dynamics of respiratory pattern generation; and acute perioperative pain.

    Research Areas: sensory perception, nerve injury, central nervous system, neuropathy, neuropathic pain, anesthesia, pain

  • Allen Lab

    The Allen Lab focuses on immunologic aspects of cancer development and progression, with a focus on head and neck squamous cell carcinoma, the most common form of head and neck cancer. Work also aims to translate key knowledge learned from our investigation into anti-tumor immunity to other diseases in otolaryngology, including inflammatory and infectious disorders.

    Research Areas: anti-tumor immunity, otolaryngology, cancer, head and neck cancer, Squamous cell carcinoma

  • ALS Center

    The ALS Center for Cell Therapy and Regeneration Research at Johns Hopkins is committed to identifying the causes of the neurodegenerative disease, amyotrophic lateral sclerosis (ALS), and discovering new and effective treatment options. At the ALS Center, Johns Hopkins researchers work with other investigators, including those at the Robert Packard Center for ALS Research at Johns Hopkins and clinicians within the Johns Hopkins ALS Clinic to aggressively take groundbreaking scientific discoveries and turn them into clinical applications that will improve the quality of life of those diagnosed with ALS.

    Research Areas: ALS

    Lab Website

    Principal Investigator

    Nicholas Maragakis, M.D.

    Department

    Neurology

  • Alyssa Parian Lab

    The Alyssa Parian Lab works to identify early markers of dysplasia. We also study inflammatory bowel disease-associated cancers, conduct IBD clinical trials and examine IBD extraintestinal manifestations.

    Research Areas: inflammatory bowel disease, cancer, displaysia

    Principal Investigator

    Alyssa Parian, M.D.

    Department

    Medicine

  • Alzheimer's Disease Research Center

    The goal of the Johns Hopkins Alzheimer's Disease Research Center (ADRC) is to accelerate the discovery of new treatments that are directed at the basic mechanisms of disease, and to hasten the time when effective treatments for AD and related disorders become a reality. We have a strong commitment to basic research regarding the underlying mechanisms of Alzheimer's Disease and related disorders, and how this may translate into effective treatment. We perform clinical research seeking to identify medications to delay or treat the symptoms of dementia. We also provided many educational programs for family members and professionals.

    Research Areas: dementia, Alzheimer's disease

    Lab Website

    Principal Investigator

    Marilyn Albert, Ph.D.

    Department

    Neurology

  • Ami Shah Lab

    Researchers in the Ami Shah Lab study scleroderma and Raynaud’s phenomenon. We examine the relationship between cancer and scleroderma, with a focus on how and if cancer causes scleroderma to develop in some patients. We are currently conducting clinical research to study ways to detect cardiopulmonary complications in patients with scleroderma, biological and imaging markers of Raynaud’s phenomenon, and drugs that improve aspects of scleroderma.

    Research Areas: Raynaud's phenomenon, cancer, scleroderma, drugs, cardiovascular diseases

    Lab Website

    Principal Investigator

    Ami Shah, M.D.

    Department

    Medicine

  • Amit Pahwa Lab

    The Amit Pahwa Lab conducts research on a variety of topics within internal medicine. Our most recent studies have explored misanalysis of urinalysis results, urinary fractional excretion indices in the evaluation of acute kidney injury and nocturnal enuresis as a risk factor for falls in older women. We also investigate cancer diagnostics and treatments. In this area, our recent research has included studying cutaneous shave biopsies for diagnosing primary colonic adenocarcinoma as well as growth inhibition and apoptosis in human brain tumor cell lines using selenium.

    Research Areas: acute kidney injury, cancer, internal medicine, urology

    Principal Investigator

    Amit Pahwa, M.D.

    Department

    Medicine

  • Amita Gupta Lab

    The Amita Gupta Lab focuses on drug trials to prevent and treat HIV, tuberculosis (TB) and other co-morbidities in adults, including pregnant women and children who reside in low-income settings. We also conduct cohort studies assessing HIV, inflammation and nutrition in international settings; TB in pregnancy; and risk factors for TB in India (CTRIUMPH). We collaborate with several faculty in the Center for TB Research, Division of Infectious Diseases and the School of Public Health.

    Research Areas: global health, nutrition, infectious disease, HIV, inflammation, tuberculosis

    Principal Investigator

    Amita Gupta, M.D.

    Department

    Medicine

  • Amy Knight Lab

    Research in the Amy Knight Lab focuses on methods by which information technology can improve the quality of health care. We investigate the role computer systems can play in expanding patient-doctor communication, streamlining healthcare tasks for both medical students and practitioners, and establishing a higher standard of care. Our studies have explored the effectiveness of semi-automating daily progress notes for improved documentation, peer assessment of professional performance among hospitalists, ways to enable patient-centered care using information technology and other topics.

    Research Areas: outcomes, patient-provider relationships, internal medicine, information technology

    Principal Investigator

    Amy Knight, M.D.

    Department

    Medicine

  • Ana-Marie Orbai Lab

    The Ana-Marie Orbai Lab focuses on inflammatory arthritis. Current clinical research projects in the lab examine patient symptoms and experiences in rheumatic diseases and inflammatory arthritis. We focus on stiffness in rheumatoid arthritis and patient-reported outcomes. Previous research in the lab focused on systemic lupus erythemaous (SLE).

    Research Areas: autoimmune rheumatic diseases, arthritis, rheumatoid arthritis

    Lab Website

    Principal Investigator

    Ana-Maria Orbai, M.D., M.H.S.

    Department

    Medicine

  • Anderson Lab

    Research in the Anderson laboratory focuses on cellular signaling and ionic mechanisms that cause heart failure, arrhythmias and sudden cardiac death, major public health problems worldwide. Primary focus is on the multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII). The laboratory identified CaMKII as an important pro-arrhythmic and pro-cardiomyopathic signal, and its studies have provided proof of concept evidence motivating active efforts in biotech and the pharmaceutical industry to develop therapeutic CaMKII inhibitory drugs to treat heart failure and arrhythmias.

    Under physiological conditions, CaMKII is important for excitation-contraction coupling and fight or flight increases in heart rate. However, myocardial CaMKII is excessively activated during disease conditions where it contributes to loss of intracellular Ca2+ homeostasis, membrane hyperexcitability, premature cell death, and hypertrophic and inflammatory transcription. These downstream targets a...ppear to contribute coordinately and decisively to heart failure and arrhythmias. Recently, researchers developed evidence that CaMKII also participates in asthma.

    Efforts at the laboratory, funded by grants from the National Institutes of Health, are highly collaborative and involve undergraduate assistants, graduate students, postdoctoral fellows and faculty. Key areas of focus are:
    • Ion channel biology and arrhythmias
    • Cardiac pacemaker physiology and disease
    • Molecular physiology of CaMKII
    • Myocardial and mitochondrial metabolism
    • CaMKII and reactive oxygen species in asthma

    Mark Anderson, MD, is the William Osler Professor of Medicine, the director of the Department of Medicine in the Johns Hopkins University School of Medicine and physician-in-chief of The Johns Hopkins Hospital.
    view more

    Research Areas: heart failure, arrhythmia, cardiovascular diseases, sudden cardiac death

    Lab Website

    Principal Investigator

    Mark Anderson, M.D., Ph.D.

    Department

    Medicine

  • Andrea Cox Lab

    Research in the Andrea Cox Lab explores the immune response in chronic viral infections, with a focus on HIV and the hepatitis C virus (HCV). In our studies, we examine the role of the immune response upon exposure to HCV by examining responses to HCV in a longitudinal, prospective group of high-risk individuals. This enables us to compare the innate, humoral and cellular immune responses to infection with clearance versus persistence. Through our findings, we seek to identify mechanisms of protective immunity against HCV infection and improve HCV vaccine design.

    Research Areas: virology, vaccines, viral immunology, HIV, hepatitis C, T cells

    Principal Investigator

    Andrea Cox, M.D., Ph.D.

    Department

    Medicine

  • Andrew Douglas Lab

    Research in the Andrew Douglas Lab investigates topics within the field of biomedical engineering. Our studies primarily focus on soft biological tissues and organs, such as the heart and tongue. Our current research areas include the nonlinear mechanics of solids, the mechanical response of compliant biological tissues, finite deformation elasticity, and the static and dynamic fracture of ductile materials.

    Research Areas: biomedicine, soft tissues, biomedical engineering, organs

    Principal Investigator

    Andrew Douglas, Ph.D.

    Department

    Biomedical Engineering

  • Andrew Feinberg Laboratory

    The Feinberg Laboratory studies the epigenetic basis of normal development and disease, including cancer, aging and neuropsychiatric illness. Early work from our group involved the discovery of altered DNA methylation in cancer as well as common epigenetic (methylation and imprinting) variants in the population that may be responsible for a significant population-attributable risk of cancer.

    Over the last few years, we have pioneered the field of epigenomics (i.e., epigenetics at a genome-scale level), founding the first NIH-supported NIH epigenome center in the country and developing many novel tools for molecular and statistical analysis. Current research examines the mechanisms of epigenetic modification, the epigenetic basis of cancer, the invention of new molecular, statistical, and epidemiological tools for genome-scale epigenetics and the epigenetic basis of neuropsychiatric disease, including schizophrenia and autism.

    Research Areas: autism, cancer, epigenetics, schizophrenia, human development, aging, DNA, genomics, neuropsychiatric disease

    Lab Website

    Principal Investigator

    Andrew Feinberg, M.D., M.P.H.

    Department

    Medicine

  • Andrew Laboratory: Center for Cell Dynamics

    Researchers in the Center for Cell Dynamics study spatially and temporally regulated molecular events in living cells, tissues and organisms. The team develops and applies innovative biosensors and imaging techniques to monitor dozens of critical signaling pathways in real time. The new tools help them investigate the fundamental cellular behaviors that underlie embryonic development, wound healing, cancer progression, and functions of the immune and nervous systems.

    Research Areas: immunology, cancer, epithelial tube, nervous system, molecular biology

    Lab Website

    Principal Investigator

    Deborah Andrew, M.S., Ph.D.

    Department

    Cell Biology

  • Andrew Lane Lab

    The Lane laboratory is focused on understanding molecular mechanisms underlying chronic rhinosinusitis and particularly the pathogenesis of nasal polyps.  Diverse techniques in molecular biology, immunology, physiology, and engineering are utilized to study epithelial cell innate immunity, olfactory loss, the sinus microbiome, and drug delivery to the nose and sinus cavities. Ongoing work explores how epithelial cells participate in the immune response and contribute to chronic sinonasal inflammation. The lab creates and employs transgenic mouse models of chronic sinusitis to support research in this area. Collaborations are in place with the School of Public Health to explore mechanisms of anti-viral immunity in influenza and rhinovirus, and with the University of Maryland to characterize the bacterial microbiome of the nose and sinuses in health and disease.

    Research Areas: nasal polyps, olfaction, cell culture, transgenic mice, chronic rhinosinusitis, innate immunity, molecular biology

  • Andrew McCallion Laboratory

    The McCallion Laboratory studies the roles played by cis-regulatory elements (REs) in controlling the timing, location and levels of gene activation (transcription). Their immediate goal is to identify transcription factor binding sites (TFBS) combinations that can predict REs with cell-specific biological control--a first step in developing true regulatory lexicons.

    As a functional genetic laboratory, we develop and implement assays to rapidly determine the biological relevance of sequence elements within the human genome and the pathological relevance of variation therein. In recent years, we have developed a highly efficient reporter transgene system in zebrafish that can accurately evaluate the regulatory control of mammalian sequences, enabling characterization of reporter expression during development at a fraction of the cost of similar analyses in mice. We employ a range of strategies in model systems (zebrafish and mice), as well as analyses in the human population, to illu...minate the genetic basis of disease processes. Our long-term objective is to use these approaches in contributing to improved diagnostic, prognostic and therapeutic strategies in patient care. view more

    Research Areas: cell biology, genomics, gene regulation, nervous system

    Principal Investigator

    Andy McCallion, Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • Anika Alvanzo Lab

    Work in the Anika Alvanzo Lab focuses on screening and interventions for at-risk substance use, and race, ethnicity and sex differences in substance use disorders.

    Research Areas: substance abuse, race, health disparities

    Principal Investigator

    Anika Alvanzo, M.D., M.S.

    Department

    Medicine

  • Aniket Sidhaye Lab

    Investigators in the Aniket Sidhaye Lab focus on the mechanism of nuclear hormone receptor action—with an emphasis on thyroid hormone receptors and PPAR-gamma obesity—and transitional care of patients with type 1 diabetes.

    Research Areas: biochemistry, obesity, hormones, diabetes, transitional care, endocrinology, thyroid

    Lab Website

    Principal Investigator

    Aniket Sidhaye, M.D.

    Department

    Medicine

  • Anna Durbin Lab

    The Anna Durbin Lab evaluates experimental vaccines through human clinical trials. We have conducted both pediatric and adult clinical trials on vaccines for HIV, hepatitis C, HPV, influenza, malaria, dengue virus, rotavirus and other viruses. We also have a longstanding interest in better understanding the immunologic factors of dengue infection and disease. We’re working to identify the viral, host and immunologic factors that cause severe dengue illness.

    Research Areas: dengue fever, epidemiology, international health, vaccines, HPV, clinical trials, HIV, malaria, hepatitis C, flu

    Lab Website

    Principal Investigator

    Anna Durbin, M.D.

    Department

    Medicine

  • Anne Rompalo Lab

    Research in the Anne Rompalo Lab focuses on STD research and application. We recently examined the relationship between violence against women and HIV-related risk factors in women living in the United States. Past projects include a nine-year longitudinal observation study of HIV-infected women in Baltimore.

    Research Areas: women, HIV, sexually transmitted diseases, domestic violence

    Principal Investigator

    Anne Rompalo, M.D.

    Department

    Medicine

  • Anthony N. Kalloo Lab

    Research interests in the Anthony N. Kalloo Lab include therapeutic endoscopy, pancreatitis, sphincter of Oddi dysfunction and abdominal pain.

    Research Areas: sphincter of Oddi dysfunction, endoscopy, abdominal pain, pancreatitis

    Principal Investigator

    Anthony Kalloo, M.B.B.S., M.D.

    Department

    Medicine

  • Antoine Azar Lab

    The Antoine Azar Lab conducts research on topics related to primary immunodeficiency diseases, allergies and lung disease. Specifically, we explore the role of primary immunodeficiency in certain difficult-to-treat chronic lung diseases, such as COPD, emphysema and asthma.

    Research Areas: emphysema, immunology, asthma, allergies, lung disease, COPD

    Principal Investigator

    Antoine Azar, M.D.

    Department

    Medicine

  • Antony Rosen Lab

    Research in the Antony Rosen Lab investigates the mechanisms shared by the autoimmune rheumatic diseases such as lupus, myositis, rheumatoid arthritis, scleroderma and SjogrenÕs syndrome. We focus on the fate of autoantigens in target cells during various circumstances, such as viral infection, relevant immune effector pathways and exposure to ultraviolet radiation. Our recent research has sought to define the traits of autoantibodies that enable them to induce cellular or molecular dysfunction. We also work to better understand the mechanisms that form the striking connections between autoimmunity and cancer.

    Research Areas: myositis, lupus, rheumatology, Sjogren's syndrome, scleroderma, autoimmune rheumatic diseases, rheumatoid arthritis

    Principal Investigator

    Antony Rosen, M.B.Ch.B., M.S.

    Department

    Medicine

  • Ariel Green Lab

    Research in the Ariel Green Lab focuses on informing and improving decisions surrounding the use of invasive medical technologies for older adults with complex medical diseases. Our long-term goals are to conduct epidemiologic research, create public health initiatives, and help shape policies that improve the lives of older adults.

    Research Areas: epidemiology, health care policy, decision making, gerontology

    Principal Investigator

    Ariel R. Green, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Arturo Casadevall Lab

    The Arturo Casadevall Lab uses a multidisciplinary approach to explore two key topics within microbiology and immunology: how microbes cause disease and how hosts can protect themselves against those microbes. Much of our research focuses on the fungus Cryptococcus neoformans, which frequently causes lung infections in people with impaired immunity. We also work with the microorganism Bacillus anthracis, a bacterium that causes anthrax and is frequently used in biological warfare. Our goal is to devise antibody-based countermeasures to protect against this and other similar threats.

    Research Areas: microbiology, immunology, vaccines, cryptococcus neoformans, tuberculosis

    Principal Investigator

    Arturo Casadevall, M.D., M.S., Ph.D.

    Department

    Medicine

  • Asad Latif Lab

    Research in the Asad Latif Lab focuses on patient safety and quality improvement. Our key interests include preventing hospital-acquired infections and improving health systems, the evaluation and prevention of healthcare errors and the utility of telemedicine in intensive care units. One recent study focused on reducing medication errors (the single most common type of error in healthcare) related to drug formulation in the intensive care unit.

    Research Areas: critical care medicine, patient safety, quality improvement, infection control, quality of care

  • Ashikaga Lab

    We specialize in unconventional, multi-disciplinary approaches to studying the heart at the intersection of applied mathematics, physics and computer science. We focus on theory development that leads to new technology and value delivery to the society. Currently we have three research programs:

    1. Precision Medicine
    To develop a quantitative approach to personalized risk assessment for stroke and dementia based on patent-specific heart anatomy, function and blood flow.
    Disciplines: Cardiac Hemodynamics; Medical Imaging Physics; Continuum Mechanics; Computational Fluid Dynamics

    2. Information Theory
    To quantify and perturb cardiac fibrillation that emerges as a macro-scale behavior of the heart from micro-scale behaviors of inter-dependent components.
    Disciplines: Cardiac Electrophysiology; Spiral Wave; Information Theory; Complex Networks

    3. Artificial Intelligence
    To develop artificial intelligence algorithms to predict the future risk of heart attack, stroke and sudden... death, and to assist surgical interventions to prevent these outcomes.
    Disciplines: Medical Imaging Physics; Artificial Intelligence; Robotically Assisted Interventions
    view more

    Research Areas: complex systems, Computational Fluid Dynamics, spiral wave, artificial intelligence, informational theory

  • Ashish Nimgoankar Lab

    The Ashish Nimgoankar Lab is interested in translational technology development and image-guided therapies.

    Research Areas: translational technology, imaging

    Principal Investigator

    Ashish Nimgaonkar, M.B.B.S., M.D., M.S.

    Department

    Medicine

  • Ashwin Balagopal Lab

    Research in the Ashwin Balagopal Lab examines innate immunology and hepatic inflammation. Specifically, we explore microbial translocation Kupffer cells in HIV- hepatitis C virus (HCV) coinfection, while also developing in situ liver studies of HIV-HCV pathogenesis. Previous work has focused on antiretroviral therapy, interferon sensitivity and virologic setpoint in HIV/hepatitis C virus coinfected patients.

    Research Areas: antiretroviral therapies, infectious disease, AIDS, HIV, hepatitis C

    Principal Investigator

    Ashwin Balagopal, M.D.

    Department

    Medicine

  • Athir Morad Lab

    Research in the Athir Morad Lab primarily focuses on perioperative pain management for neurosurgery patients. Our team has conducted two randomized controlled trials to assess the efficacy of patient-controlled analgesia (PCA) following craniotomy. Our current research includes studies on the safety of opioid administration following craniotomy through the use of end-tidal CO2 detection, as well as research into the use of transcortical magnetic stimulation (TMS) for managing pain after spine surgery.

    Research Areas: neurosurgery, opioids, spine, anesthesiology, pain

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5