Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 41 to 50 of 745 results

Show: 10 · 20 · 50

  1. 3
  2. 4
  3. 5
  4. 6
  5. 7
  • Antony Rosen Lab

    Research in the Antony Rosen Lab investigates the mechanisms shared by the autoimmune rheumatic diseases such as lupus, myositis, rheumatoid arthritis, scleroderma and SjogrenÕs syndrome. We focus on the fate of autoantigens in target cells during various circumstances, such as viral infection, relevant immune effector pathways and exposure to ultraviolet radiation. Our recent research has sought to define the traits of autoantibodies that enable them to induce cellular or molecular dysfunction. We also work to better understand the mechanisms that form the striking connections between autoimmunity and cancer.

    Research Areas: myositis, lupus, rheumatology, Sjogren's syndrome, scleroderma, autoimmune rheumatic diseases, rheumatoid arthritis

    Principal Investigator

    Antony Rosen, M.B.Ch.B., M.S.

    Department

    Medicine

  • Ariel Green Lab

    Research in the Ariel Green Lab focuses on informing and improving decisions surrounding the use of invasive medical technologies for older adults with complex medical diseases. Our long-term goals are to conduct epidemiologic research, create public health initiatives, and help shape policies that improve the lives of older adults.

    Research Areas: epidemiology, health care policy, decision making, gerontology

    Principal Investigator

    Ariel R. Green, M.D., M.P.H., Ph.D.

    Department

    Medicine

  • Arturo Casadevall Lab

    The Arturo Casadevall Lab uses a multidisciplinary approach to explore two key topics within microbiology and immunology: how microbes cause disease and how hosts can protect themselves against those microbes. Much of our research focuses on the fungus Cryptococcus neoformans, which frequently causes lung infections in people with impaired immunity. We also work with the microorganism Bacillus anthracis, a bacterium that causes anthrax and is frequently used in biological warfare. Our goal is to devise antibody-based countermeasures to protect against this and other similar threats.

    Research Areas: microbiology, immunology, vaccines, cryptococcus neoformans, tuberculosis

    Principal Investigator

    Arturo Casadevall, M.D., M.S., Ph.D.

    Department

    Medicine

  • Asad Latif Lab

    Research in the Asad Latif Lab focuses on patient safety and quality improvement. Our key interests include preventing hospital-acquired infections and improving health systems, the evaluation and prevention of healthcare errors and the utility of telemedicine in intensive care units. One recent study focused on reducing medication errors (the single most common type of error in healthcare) related to drug formulation in the intensive care unit.

    Research Areas: critical care medicine, patient safety, quality improvement, infection control, quality of care

  • Ashikaga Lab

    We specialize in unconventional, multi-disciplinary approaches to studying the heart at the intersection of applied mathematics, physics and computer science. We focus on theory development that leads to new technology and value delivery to the society. Currently we have three research programs:

    1. Precision Medicine
    To develop a quantitative approach to personalized risk assessment for stroke and dementia based on patent-specific heart anatomy, function and blood flow.
    Disciplines: Cardiac Hemodynamics; Medical Imaging Physics; Continuum Mechanics; Computational Fluid Dynamics

    2. Information Theory
    To quantify and perturb cardiac fibrillation that emerges as a macro-scale behavior of the heart from micro-scale behaviors of inter-dependent components.
    Disciplines: Cardiac Electrophysiology; Spiral Wave; Information Theory; Complex Networks

    3. Artificial Intelligence
    To develop artificial intelligence algorithms to predict the future risk of heart attack, stroke and sudden... death, and to assist surgical interventions to prevent these outcomes.
    Disciplines: Medical Imaging Physics; Artificial Intelligence; Robotically Assisted Interventions
    view more

    Research Areas: complex systems, Computational Fluid Dynamics, spiral wave, artificial intelligence, informational theory

  • Ashish Nimgoankar Lab

    The Ashish Nimgoankar Lab is interested in translational technology development and image-guided therapies.

    Research Areas: translational technology, imaging

    Principal Investigator

    Ashish Nimgaonkar, M.B.B.S., M.D., M.S.

    Department

    Medicine

  • Athir Morad Lab

    Research in the Athir Morad Lab primarily focuses on perioperative pain management for neurosurgery patients. Our team has conducted two randomized controlled trials to assess the efficacy of patient-controlled analgesia (PCA) following craniotomy. Our current research includes studies on the safety of opioid administration following craniotomy through the use of end-tidal CO2 detection, as well as research into the use of transcortical magnetic stimulation (TMS) for managing pain after spine surgery.

    Research Areas: neurosurgery, opioids, spine, anesthesiology, pain

  • Atul Bedi Lab

    The Atul Bedi Lab in the Head and Neck cancer research program provides fundamental insights into the molecular determinants and mechanisms by which tumor cells evade death signals entrained by the immune system and anticancer agents. Their recent studies show that tumor-induced immune tolerance limits the in vivo anti-tumor efficacy of tumor-targeted antibodies and that the tumor cell-autonomous expression of transforming growth factor-b (TGF-b) is a key molecular determinant of the de novo or acquired resistance of cancers to EGFR-targeted antibody. Their laboratory has developed novel bi-functional antibody-based strategies to simultaneously counteract immune tolerance in the tumor microenvironment and to enhance the anti-tumor efficacy of targeted antibody therapies for the treatment of cancer.

    Research Areas: targeted antibody therapies, transforming growth factor-b, cancer, head and neck cancer, tumor-targeted antibodies

  • Auditory Brainstem Laboratory

    The overall goal of the Auditory Brainstem Library is to understand how abnormal auditory input from the ear affects the brainstem, and how the brain in turn affects activity in the ear through efferent feedback loops. Our emphasis is on understanding the effects of different forms of acquired hearing loss (genetic, conductive, noise-induced, age-related, traumatic brain injury-related) and environmental noise. We are particularly interested in plastic changes in the brain that compensate for some aspects of altered auditory input, and how those changes relate to central auditory processing deficits, tinnitus, and hyperacusis. Understanding these changes will help refine therapeutic strategies and identify new targets for treatment. We collaborate with other labs in the Depts. of Otolaryngology, Neuroscience, Neuropathology, the Wilmer Eye Institute, and the Applied Physics Laboratory at Johns Hopkins, in addition to labs outside the university to increase the impact and clinical relev...ance of our research. view more

    Research Areas: hearing disorders, compound action potentials, auditory brainstem response, otoacoustic emissions, operation conditions, audiology, acoustic startle modification, hearing, neurology

  • Ayse Gurses Lab

    Work in the Ayse Gurses Lab examines several topics related to human factors, including methods for improving patient safety in the cardiac operating room, care coordination, transitions of care and compliance of providers with evidence-based guidelines. Our team also has an interest in research that explores the working conditions of nurses. We collaborate on studies related to the development of geriatrics health service delivery at all levels of the health system.

    Research Areas: patient safety, human factors, informatics, care coordination, evidence-based medicine, gerontology

  1. 3
  2. 4
  3. 5
  4. 6
  5. 7