Dara L. Kraitchman, VMD, PhD

Dr. Kraitchman is a Professor of Radiology and Molecular and Comparative Pathobiology and the Cardiovascular Interventional Section Head in the Division of MR Research.

As a veterinarian and bioengineer, Dr. Kraitchman performed the first MRI-guided intracardiac delivery of stem cells to the heart, studied stem cell distribution with SPECT-CT and PET-CT, and developed the first technique to provide X-ray-visible stem cells for X-ray fluoroscopic delivery. She specializes in advanced interventional techniques and minimally invasive procedures.

Rebecca Krimins, DVM, MS

Dr. Krimins is a veterinary anesthesiologist and an Assistant Professor of Radiology, Anesthesia and Critical Care Medicine, and Molecular and Comparative Pathobiology.

Dr. Krimins is a board-eligible veterinary anesthesiologist in the state of Maryland with over 15 years of experience in managing critically ill patients during advanced imaging procedures. Dr. Krimins' specialty in veterinary anesthesia, sedation and pain management anchors CIGAT’s advanced imaging capabilities to ensure that each veterinary patient receives the best diagnostic and therapeutic care. Dr. Krimins' current research focuses on clinical trials for prostate cancer, bladder cancer, and pain management.

CIGAT Contact Address

Center for Image-Guided Animal Therapy
Johns Hopkins University
Russell H. Morgan Department of Radiology and Radiological Science
600 N. Wolfe Street
Park 311
Baltimore, MD 21287
Phone 410-502-7325
Fax 410-614-1977
Email cigat@jhmi.edu
Website: www.hopkinscigat.org

Follow us @Hopkins_CIGAT
Like us @hopkinscigat

Please call or email for more information about advanced imaging and current clinical trials!

CIGAT Location Map

Johns Hopkins University
Baltimore, MD
“Best of both worlds at either end of the patient table”

The backbone of CIGAT

The Center for Image-Guided Animal Therapy (CIGAT) is a state-of-the-art, internationally recognized, advanced diagnostic imaging facility designed specifically for veterinary patients. The center offers a suite of advanced multi-modality imaging solutions for these patients, including:

- X-ray fluoroscopy and angiography
- Computed tomography (CT)
- 1.5T, 3T, 7T Magnetic resonance imaging and angiography (MRI/MRA)
- PET/CT, SPECT/CT, and scintigraphy
- Image-guided and minimally invasive procedures

The heart of the CIGAT team

Co-Directors Dr. Kraitchman and Dr. Krimins lead a team that includes dedicated veterinary technicians and radiologic, nuclear medicine, and MRI technologists.

The images generated at the center are transferred, in real time, to a veterinary radiologist for final evaluation. All imaging reports are sent to the requesting veterinarian.

In addition to diagnostic imaging, CIGAT can provide MRI-, CT-, and ultrasound-guided biopsies and interventional radiology solutions.

Clinical trials at CIGAT

CIGAT offers the advantage of having experts in radiology, cardiology, oncology, surgery, and neurology overseeing advanced imaging techniques on leading-edge equipment to offer the newest developments at the East Baltimore campus of Johns Hopkins University to every veterinary patient. Clinical trials in dogs and cats are offered in areas such as:

- osteosarcoma
- mammary cancer
- transitional cell carcinoma
- prostate cancer
- orthopedic pain
- heart disease
- brain cancer
- liver cancer
- lung cancer

CIGAT: A distinctive choice

A veterinary anesthesiologist is involved with every CIGAT procedure to ensure that each patient receives optimal care. The newest imaging techniques and equipment under development at Johns Hopkins Medicine are available to every veterinary patient.

Image-guided procedures

Image-guided biopsies enable precise guidance of a needle to abnormalities detected by MRI or CT. CIGAT can perform MRI- or CT-guided biopsies of nearly all pathological lesions. Tissue specimens can be submitted to a designated lab or returned to the requesting veterinarian.

Minimally invasive procedures

Interventional radiology is a sub-specialty of radiology and utilizes minimally invasive image-guided procedures, such as cryoablation, chemoembolization, and stenting, to diagnose and treat diseases. Most patients go home the same day without skin incisions.