Research Summary
Dr. Matunis studies the stem cells that sustain spermatogenesis in the fruit fly Drosophila melanogaster to understand how signals from neighboring cells control stem cell renewal or differentiation. In the fruit fly testes, germ line stem cells attach to a cluster of non-dividing somatic cells called the hub. When a germ line stem cell divides, its daughter is pushed away from the hub and differentiates into a gonialblast. The germ line stem cells receive a signal from the hub that allows it to remain a stem cell, while the daughter displaced away from the hub loses the signal, and differentiates. Researchers in the Matunis lab have found key regulatory signals involved in this process.
Using genetic and genomic approaches, the Matunis lab continues to identify more genes that define the germ line stem cells' fate. She and her team are also investigating how spermatogonia reverse differentiation to become germ line stem cells again.
Selected Publications
View all on PubMed
Hetie P, de Cuevas M, Matunis E. "Conversion of quiescent niche cells to somatic stem cells causes ectopic niche formation in the Drosophila testis." Cell Rep. 2014 May 8;7(3):715-21. doi: 10.1016/j.celrep.2014.03.058. Epub 2014 Apr 18.
Stine RR, Matunis EL. "JAK-STAT signaling in stem cells." Adv Exp Med Biol. 2013;786:247-67. doi: 10.1007/978-94-007-6621-1_14.
Stine RR, Matunis EL. "Stem cell competition: finding balance in the niche." Trends Cell Biol. 2013 Aug;23(8):357-64. doi: 10.1016/j.tcb.2013.03.001. Epub 2013 Apr 16. Review.
Matunis EL, Stine RR, de Cuevas M. "Recent advances in Drosophila male germline stem cell biology." Spermatogenesis. 2012 Jul 1;2(3):137-144.
Sinden D, Badgett M, Fry J, Jones T, Palmen R, Sheng X, Simmons A, Matunis E, Wawersik M. "Jak-STAT regulation of cyst stem cell development in the Drosophila testis." Dev Biol. 2012 Dec 1;372(1):5-16. doi: 10.1016/j.ydbio.2012.09.009. Epub 2012 Sep 23.