Alban Latremoliere, Ph.D., M.Sc.

Headshot of Alban Latremoliere
  • Assistant Professor of Neurosurgery

Research Interests

Pain; Sleep; Neural plasticity; Nerve regeneration; Functional recovery; Translational Medicine more


Alban Latremoliere is an Assistant Professor in the department of Neurosurgery at Johns Hopkins University (MD, USA). He graduated in Neuroscience from the University Pierre and Marie Curie (Paris, France) and performed his postdoctoral training at the F.M. Kirby Neurobiology Center at Boston Children’s Hospital and Harvard Medical School (MA, USA). Dr. Latremoliere’s laboratory focuses on the neurobiology of sensory systems, with an emphasis on pain and regeneration. The main areas of research are: 1) Assess ongoing pain in rodent models of neuropathic pain in vivo and determine the mechanisms responsible, 2) Understand the relationship between reinnervation of target tissue after peripheral nerve regeneration and functional recovery/pain sensitivity and 3) Determine how acute and chronic pain alter sleep architecture. more


  • Assistant Professor of Neurosurgery
  • Assistant Professor of Neuroscience

Departments / Divisions



  • B.Sc.; University of Pierre and Marie Curie - Paris (France) (2002)
  • M.Sc.; University of Pierre and Marie Curie - Paris (France) (2003)
  • Ph.D.; University of Pierre and Marie Curie - Paris (France) (2007)

Additional Training

  • Postdoctoral training, Harvard Medical School & Massachusetts General Hospital - Boston, MA (2010)
  • Postdoctoral training, Harvard Medical School & Boston Children’s Hospital - Boston, MA (2017)

Research & Publications

Research Summary

Peripheral nerve injury can lead to neuropathic pain, a condition characterized by abnormal pain symptoms like hyperalgesia (more pain to noxious stimuli), allodynia (pain in response to innocuous stimuli) and spontaneous pain (pain in absence of external stimuli). The majority of treatments available are ineffective and display many side effects and most attempts to develop new analgesics have failed. There is, therefore a critical need to identify novel targets to develop new therapeutic approaches.

Our laboratory is studying the neural plasticity responsible for neuropathic pain using mouse genetics and behavioral/physiological approaches. Our goal is to find relevant ways to measure abnormal pain symptoms in rodent models of chronic pain and understand the underlying mechanisms to develop new treatments with improved translational efficacy.

One such pathway is the tetrahydrobiopterin (BH4) production pathway, whose role in neuropathic pain was identified through Human genetic studies. Using different tissue-specific inducible transgenic mouse lines to visualize and modulate the cells engaging the BH4 production pathway, we showed that modulating this pathway could be a viable therapeutic strategy. We are now testing the efficacy of new compounds that safely modulate BH4 production on pain hypersensitivity and other nerve injured-induced changes.

Another major complaint reported by many neuropathic pain patients is poor sleep quality, which leads to constant fatigue and lack of restorative sleep. The exact nature of the sleep disturbances caused by chronic pain is unknown, and yet this represents a critical aspect of neuropathic pain. In collaboration with Dr. Chloe Alexandre we work to characterize these sleep disturbances in mouse models of chronic pain and determine the neural networks responsible using various transgenic tools to visualize, activate or inhibit specific neurons.


The Latremoliere lab studies the neural plasticity caused by peripheral nerve injury in mice, with an emphasis on pain and recovery of functional recovery.

Lab Website: Latremoliere Lab

Technology Expertise Keywords

Pain behavior; Electroencephalogram/electromyogram (EEG/EMG); Optogenetics; Chemogenetics; Peripheral nerve injury; Neuropathic pain; Sensory/motor functional recovery

Selected Publications

View all on PubMed

Liu Y*, Latremoliere A*, Li X*, Zhang Z*, Chen M, Wang X, Fang C, Zhu J, Alexandre C, Gao Z, Chen B, Ding X, Zhou JY, Zhang Y, Chen C, Wang KH, Woolf CJ, He Z. (2018). Touch and tactile neuropathic pain sensitivity are set by corticospinal projections. Nature. 2018 Sep;561(7724):547-550

Alexandre, C*, Latremoliere, A*, Ferreira, A, Miracca, G, Yamamoto, M, Scammell, TE, and Woolf, CJ (2017). Decreased alertness due to sleep loss increases pain sensitivity in mice. Nat Med 23, 768-774

Kourbanova, K., Alexandre, C., Latremoliere, A. (2022). Effect of sleep loss on pain-New conceptual and mechanistic avenues. Front Neurosci. 16:1009902

Latremoliere A*, Cheng L*, DeLisle M, Wu C, Chew S, Hutchinson EB, Sheridan A, Alexandre C, Latremoliere F, Sheu SH, Golidy S, Omura T, Huebner EA, Fan Y, Whitman MC, Nguyen E, Hermawan C, Pierpaoli C, Tischfield MA, Woolf CJ, Engle EC. (2018). Neuronal-Specific TUBB3 Is Not Required for Normal Neuronal Function but Is Essential for Timely Axon Regeneration. Cell Rep. 2018 Aug 14;24(7):1865-1879

Latremoliere, A., Latini, A., Andrews, N., Cronin, S.J., Fujita, M., Gorska, K., Hovius, R., Romero, C., Chuaiphichai, S., Painter, M., Miracca, G., Babaniyi, O., Remor, A.P., Duong, K., Riva, P., Barrett, L.B., Ferreiros, N., Naylor, A., Penninger, J.M., Tegeder, I., Zhong, J., Blagg, J., Channon, K.M., Johnsson, K., Costigan, M., and Woolf, C.J. (2015). Reduction of Neuropathic and Inflammatory Pain through Inhibition of the Tetrahydrobiopterin Pathway. Neuron 86, 1393-1406

Videos & Media

Recent News Articles and Media Coverage

A Good Night's Sleep or a Cup of Coffee Makes Things Less Painful, Technology Networks (June 02, 2017)

To improve chronic pain, get more sleep (coffee helps too), Medicalxpress (May 8, 2017)

Before You Take Ibuprofen, Try This, Time (May 18, 2017)

Tracking sleep disruptions could improve nerve pain treatments NewScientist (May 2022)

Targeting Sepiapterin Reductase to Treat Neuropathic Pain, (June 22, 2015)

Is this you? Edit Profile
back to top button