Raising Awareness of AERD

To help fund research into aspirin-exacerbated respiratory disease, patient Shadi Baniani and friends organized a charity event.

When 38-year-old Shadi Baniani moved to the Northern Virginia area from her native California in 2008, she got the flu for the first time. Rather than feeling better in a week or two, as most patients do, her illness dragged on, morphing into asthma and a series of sinus infections.

Baniani, who works in the U.S. Patent Office as a patent quality assurance specialist, visited doctor after doctor, and remembers hearing the same diagnosis again and again: “This is just allergies. Everything will be okay.”

As time passed, she felt only worse, losing her sense of balance, developing intense migraines, and gradually losing her ability to breathe sustainably. Eventually, Baniani landed at Johns Hopkins in the office of otolaryngologist–head and neck surgeon Jean Kim, where she delivered a stunning diagnosis: a condition called aspirin-exacerbated respiratory disease, or AERD, a triad that includes a proliferation of nasal polyps, intense asthma and a sensitivity to aspirin and its derivatives that can trigger respiratory distress.

After an initial surgery to clear her nose and sinuses of polyps, Baniani’s asthma and other lower respiratory symptoms dramatically improved. Though she described the procedure as life-changing, it wasn’t permanent. Polyps caused by AERD gradually grow back after surgery, explains Kim, necessitating follow-up procedures to keep them in check. Respiratory symptoms must also be managed with a regimen of inhalers and oral steroids, drugs that cause a host of dangerous side effects.

With each exacerbation of her disease, Baniani’s friends and family members began to ask more questions about the disease, and she recalls that none of them had heard about the condition. Kim explains that the disease is underfunded by agencies in the U.S. and there are few resources for research showing progress toward a cure.

To raise awareness and funding for research into the disease, Baniani and her friends organized a charity event at a restaurant in Falls Church, Virginia. Some of her friends are in a band called Feel My Tips, so they performed, and the restaurant owners donated the space. Local businesses gave gift cards to raffle off at the charity; friends and family donated directly to Kim. Baniani raised an approximate total of $7,000. She hopes to replicate this success at an upcoming dinner in California.

After being treated at Johns Hopkins by Jean Kim, left, patient Shadi Baniani was compelled to raise awareness of AERD and to raise funds to fuel future research.

All monetary donations that were raised went to Kim’s continuous research for AERD, which has been ongoing for decades in search of a cure. Kim’s and her colleagues’ works suggests that AERD’s nasal polyps are driven by a characteristic pattern of inflammation. "If we can understand what sparks these polyps and propels their growth, we might identify new drug targets that could make a huge difference for patients with this condition," Kim says. Baniani’s ultimate wish is that one day Kim and her colleagues will find a cure for AERD. However, for now, Baniani is happy that any funding and awareness that can be raised for this disease is a possible step toward a cure. “Even though it’s such a small amount, this money could help patients like me have a treatment that’s a little more permanent than the options we have now. I have a lot of hope.”

"If we can understand what sparks these polyps and propels their growth, we might identify new drug targets that could make a huge difference for patients with this condition."

—JEAN KIM
More than a decade ago, physician-researchers at Johns Hopkins began noticing and documenting a wave of head and neck cancers that differed from traditional presentations. Patients with these tumors were often missing the usual risk factors that doctors had been taught to expect, such as smoking and alcohol use, and they tended to be significantly younger than those usually diagnosed with these cancers—in their forties and fifties, rather than their sixties and beyond. The malignant cells even looked different under the microscope. Doctors here were among the first in the world to link these tumors with human papilloma virus (HPV), the virus that also causes genital warts and the overwhelming majority of cervical cancers.

Since then, Johns Hopkins has continued to be a pioneer in learning the unique features of HPV-associated head and neck cancers and finding new ways to treat them. Recently, physicians here decided to pool their expertise to launch the Center for HPV-Related Head and Neck Cancer, part of the Sidney Kimmel Comprehensive Cancer Center, bringing multidisciplinary experts together to provide care specifically focused on this disease.

“HPV-related cancers used to make up only a fraction of the head and neck tumors we’d diagnose. Now it’s the predominant head and neck cancer that we see.” —CAROLE FAKHRY

Researchers looked at data drawn from three cohorts of cancer patients to explore the potential connection between mutational intensity and response to immunotherapy. They saw a general relationship between patients with a high mutational burden and more immune activity. Image shows immunotherapy concept with T cells attacking cancer cells.

A new Johns Hopkins study suggests that genetic sequencing could hold key to identifying patients who would benefit from treatments.
Immunotherapy drugs have made remarkable headway in many types of cancers, including melanoma, lung, colorectal, and head and neck. However, only a subset of patients benefit from these treatments. To improve the chances for success, researchers have searched for biomarkers that could signal which patients might benefit the most. One such marker, mutations in mismatch repair genes — which affect how well DNA repairs itself when it makes a mistake during replication — boost the odds that immunotherapy will work. However, only 50% of patients with these mutations respond to immunotherapy drugs.

A new study led by Johns Hopkins otolaryngologist–head and neck surgeon Rajarsi Mandal suggests that it’s not the mutation itself that makes immunotherapy more likely to work — it’s the number of resulting DNA mismatches that build up in cancer cells over time.

Mandal and colleagues performed several experiments to tease out immunotherapy response in mismatch repair deficient tumors in mice and humans. The researchers purposely created mismatch repair deficient mouse cell lines. They found that those grown for longer developed more mismatch-related mutations. When these cells were injected into mice, the animals were more likely to respond to immunotherapy drugs to eradicate these cells.

Furthermore, when the researchers extracted the resulting tumors and dissected them, those with a higher mutational burden had a greater infiltration of immune cells, suggesting that the immune system was mounting a stronger attack. After sequencing the DNA of animals treated with immunotherapy, researchers found a lower mutational burden, suggesting that the immune system was specifically targeting cells that carried more mutations.

Building on these findings, the team looked at clinical data drawn from three independent cohorts of cancer patients to see what the relationship might be between mutational intensity and response to immunotherapy in people. The researchers saw a general relationship between patients with a high mutational burden and more immune activity. In a group of 15 patients from Hopkins with mismatch repair deficient tumors, this translated into a better response to immunotherapy among patients with more mutations. This finding held true in a group of 33 patients from Memorial Sloan Kettering.

Mandal notes that these results could lead to better ways to stratify which patients might benefit from immunotherapy or help researchers develop ways to universally improve survival with these drugs.

“This could open up a whole new avenue for precision medicine, using science to change people’s clinical care and boost outcomes.”

—RAJARSI MANDAL
Center for HPV-Related Head and Neck Cancer
(continued from page 2)

positive will receive immunotherapy aimed at fighting the virus to potentially prevent cancer recurrence. Similarly, another clinical trial will use immunotherapy as a first-line treatment — a milder therapy that could help patients avoid high doses of harsher treatments.

Patients cared for through the center will have access to a host of experts in this condition, including medical, surgical, and radiation oncologists, physical therapists, and social workers. A patient navigator will help assemble each patient's care team based on their unique needs, maximizing efficiency so patients can be seen and treated quickly.

“We are at an unprecedented point where we can really change outcomes for HPV-associated cancer patients,” says Seiwert. “For these cancers, Johns Hopkins will continue to lead the way.”

To support this research, call 410-287-2124.

Explore Our Online Resource for Physicians: Clinical Connection
Connect with Johns Hopkins health care professionals about the latest clinical innovations and advances in patient care.
Visit hopkinsmedicine.org/clinicalconnection/signup

Non-Profit Org
U.S. Postage
PAID
Permit No. 5415
Baltimore, MD