-
About
- Health
-
Patient Care
I Want To...
-
Research
I Want To...
Find Research Faculty
Enter the last name, specialty or keyword for your search below.
-
School of Medicine
I Want to...
Research Laboratories
Johns Hopkins neurology and neurosurgery research brings together some of the world’s most creative and curious minds who, together are working toward cures for devastating diseases such as brain cancer, Parkinson’s disease, ALS and dementia, while broadening our understanding of the most complex organ system in the body.
-
Marsh Lab
The Marsh Lab studies stroke treatment, recovery and risk identification. The Marsh Lab created the Hemorrhage Risk Stratification (HeRS) score to predict hemorrhagic transformation in patients treated with anticoagulants. Currently, the Marsh Lab is using magnetoencephalography (MEG) to investigate how strokes impact higher level cognitive processes. Additional research in the lab focuses on treatment options for reversible cerebral vasoconstriction syndrome (RCVS).
-
Merkin Peripheral Neuropathy and Nerve Regeneration Center
The Merkin Center's goal is to advance peripheral neuropathy research, deepen our understanding of these conditions and their causes and develop viable therapies. The center will tackle pressing research questions in peripheral neuropathy, with a particular focus on areas that impede the development of better diagnostic and therapeutic strategies.
-
Mohamed Farah Lab
The Mohamed Farah Lab studies axonal regeneration in the peripheral nervous system. We've found that genetic deletion and pharmacological inhibition of beta-amyloid cleaving enzyme (BACE1) markedly accelerate axonal regeneration in the injured peripheral nerves of mice. We postulate that accelerated nerve regeneration is due to blockade of BACE1 cleavage of two different BACE1 substrates. The two candidate substrates are the amyloid precursor protein (APP) in axons and tumor necrosis factor receptor 1 (TNFR1) on macrophages, which infiltrate injured nerves and clear the inhibitory myelin debris. In the coming years, we will systematically explore genetic manipulations of these two substrates in regard to accelerated axonal regeneration and rapid myelin debris removal seen in BACE1 KO mice. We also study axonal sprouting and regeneration in motor neuron disease models.
-
Neuroimaging and Modulation Laboratory (NIMLAB)
The neuroimaging and Modulation Laboratory (NIMLAB) investigates neural correlates of cognition and behavior using neuroimaging methods such as functional magnetic resonance imaging (fMRI) and neuromodulation techniques such as transcranial magnetic stimulation (TMS). We are looking in depth at the contributions of the cerebellum and cerebro-cerebellar circuits to cognition; the effects of chronic heavy alcohol consumption on cognition and brain activation underlying cognitive function; how aging in humans affects neural systems that are important for associative learning and stimulus awareness; and the integration of transcranial magnetic stimulation with functional MRI.
-
Neuroimmunopathology Lab
The research activities of the Neuroimmunopathology Laboratory focus on studies of immunological and molecular mechanisms involved in the pathogenesis of neurological disorders. Our main areas of research include studies of neurological complications of HIV infection and AIDS, multiple sclerosis, transverse myelitis, autism and epilepsy. We seek to explore and identify immunopathological mechanisms associated with neurological disease that may be the target of potential therapeutic interventions. The laboratory collaborates with other researchers and laboratories at Johns Hopkins and other institutions in projects related with studies of the interaction between the immune and central nervous systems in pathological processes leading to neurological dysfunction.
-
Neuro-Oncology Surgical Outcomes Laboratory
Directed by Debraj “Raj” Mukherjee, MD, MPH, the laboratory focuses on improving access to care, reducing disparities, maximizing surgical outcomes, and optimizing quality of life for patients with brain and skull base tumors.
The laboratory achieves these aims by creating and analyzing institutional and national databases, developing and validating novel patient-centered quality of life instruments, leveraging machine learning and artificial intelligence platforms to risk-stratify vulnerable patient populations, and designing novel surgical trials to push the boundaries of neurosurgical innovation.
Our research also investigates novel approaches to improve neurosurgical medical education including studying the utility of video-based surgical coaching and the design of new operative instrumentation. -
Neurosurgery Spinal Research Lab
The Spinal Research Laboratory is the world’s leading research lab dedicated to animal models of spinal conditions. Our goal is to improve care and surgical outcomes for patients with spinal problems. Using novel models and techniques, our investigators have created new ways to study tumors of the spinal cord and spinal column, spinal paralysis and spinal fusion physiology. In addition, they consistently test spinal devices for effectiveness.
-
Neuro-Vestibular and Ocular Motor Laboratory
In our laboratory we study the brain mechanisms of eye movements and spatial orientation.
-How magnetic stimulation through transcranial devices affects cortical brain regions
-Neural mechanisms underlying balance, spatial orientation and eye movement
-Mathematical models that describe the function of ocular motor systems and perception of spatial orientation
-Short- and long-term adaptive processes underlying compensation for disease and functional recovery in patients with ocular motor, vestibular and perceptual dysfunction
Developing and testing novel diagnostic tools, treatments, and rehabilitative strategies for patients with ocular motor, vestibular and spatial dysfunction
-
S.C.O.R.E. Lab
The mission of the Stroke Cognitive Outcomes and Recovery (S.C.O.R.E.) Lab is to enhance knowledge of brain mechanisms that allow people recover language, empathy, and other cognitive and communicative functions after stroke, and to improve ways to facilitate recovery of these functions after stroke. We also seek to improve the understanding of neurobiology of primary progressive aphasia., and how to enhance communication in people with this group of clinical syndromes.
-
Spinal Column Biomechanics Lab
The Spinal Column Biomechanics Laboratory focuses on the study of various spinal pathologies. The Biomechanics Laboratory studies a wide array of tools and techniques in order to advance spinal surgery for the benefit of patients. With a team of researchers, engineers, and neurosurgeons, the Biomechanics Laboratory participates in the newest developments in applied and translational research. Our facility alongside the International Center for Orthopaedic Advancement at the Johns Hopkins Bayview Medical Center serves as a premiere learning institute. The laboratory not only conducts novel biomechanical studies but also functions as a teaching facility for neurosurgical trainees interested in mastering highly specialized or technical procedures.The Spinal Column Biomechanics Laboratory specializes in applied mechanics, force vector analysis, spinal instrumentation testing and development of novel spinal reconstructions.
Request an Appointment
Maryland Patients
Adult Neurology: 410-955-9441
Pediatric Neurology: 410-955-4259
Adult Neurosurgery: 410-955-6406
Pediatric Neurosurgery: 410-955-7337
Already a Patient?
Traveling for Care?
Whether you're crossing the country or the globe, we make it easy to access world-class care at Johns Hopkins.
Outside of Maryland (toll free)
410-464-6713
Request an Appointment
Medical Concierge Services
International Patients
+1-410-502-7683
Request an Appointment
Medical Concierge Services
