Introduction to the Toxicologic Pathology of the Nervous System

Katie Kelly Brennan, DVM, PhD, DAVCP
kkelly12@jhmi.edu

Objectives

• Understand the basic anatomy of the CNS & PNS
 – Sampling methods & techniques
• Be able to list the cell types and their functions
• Understand the basic pathology of the nervous system
• Be able to list the mechanisms of neurotoxicity
 – Be able to discuss specific toxicants and their effects

Overview

• Nervous system anatomy and histology
 – CNS
 – PNS
• Basic pathology of the nervous system
• Mechanisms of neurotoxicology

Basic Organization & Histology

The Nervous System

• Central Nervous System
 – Integrating, processing, coordinating sensory data and motor commands
 – Intelligence, memory, learning and emotion
 – Made up of the brain and the spinal cord
• Peripheral Nervous System
 – Provides sensory information to the CNS
 – Carries motor commands from the CNS to peripheral tissues and systems

The Central Nervous System (CNS)

• Brain
 ▪ Cerebrum
 ▪ gyri (out) and sulci (in)
 ▪ Basal ganglia
 ▪ Diencephalon/Thalamus
 ▪ Cerebellum
 ▪ Brain stem
 ▪ Midbrain
 ▪ Pons
 ▪ Medulla
 ▪ Spinal Cord
CNS Organization

- Grey matter
 - 100s of diverse neuroanatomic regions
 - Neuron cell bodies
 - Neuropil
 - Dendrites
 - Unmyelinated nerve fibers
- White matter
 - Primarily myelinated nerve fibers with glial cells
- Meninges
 - Dura Mater
 - Arachnoid/leptomeninges
 - Pia Mater
 - Cerebrospinal fluid circulates in ventricular system
 - produced by choroid plexus
CNS cell types

- Brain
 - Neurons
 - Neuroglia
 - Oligodendrocytes
 - Astrocytes
 - Microglia
 - Ependymal cells
- Meninges

Neurons

- Wide variety of shapes and sizes
- Granular basophilic cytoplasm- Nissl
- Large nuclei
- Cell processes
 - Axon
 - Dendrite
- Prominent nucleoli

Astrocytes

- Most numerous glial cells
- Long branched processes
 - Contact/support neurons, neuronal processes-provide structure
 - Cover capillary basement membranes- blood brain barrier
 - Control brain microenvironment
 - Cover basement membrane of pia mater
 - Role in guiding development
 - Limited repair
- IHC/heavy metal impregnation techniques required to see processes

The Blood-Brain Barrier

- Formed by endothelial cells, basement membrane, & astrocyte foot processes
- Immune interface
- Controls CNS homeostasis
 - Cell trafficking
 - Metabolite transport
 "blocks bugs and drugs"
Oligodendrocytes

- Responsible for myelination of axons in CNS
- Flattened concentric layers of plasma membrane wind around axons
 - Myelin(fat) - electrically insulating
 - Cooperativity in formation of myelin sheath around axons
- Small, rounded condensed nuclei
- Cytoplasm unstained by H&E

Microglia

- Part of monocyte-macrophage system
- Difficult to ID by conventional processing

Ependyma

- Epithelial lining of ventricles and spinal canal
- Cuboidal/low columnar cells
- Ciliated
- No basement membrane

Specialized Ependymal Cells- Choroid Plexus

Sampling the CNS

- High throughput-parasagittal section of brain + hemi-coronal section from the contralateral half
- Routine standard toxicology studies- coronal sections
- Additional sectioning for suspected neurotoxin/ uncertain specific CNS target sites
 - perfusion fixation
- Exsanguination, careful brain extraction, gentle manipulation
Processing the mouse brain

- Coronal/cross sections of head
Collection of Spinal Cord

Jordan et al. Preparation and Analysis of the Central Nervous System

The Peripheral Nervous System

- Subdivided into
 - Afferent nervous system
 - brings the sensory information to the CNS
 - Efferent nervous system
 - carries motor commands to muscles or glands
 - Somatic nervous system - controls skeletal muscle contractions
 - Under conscious control (voluntary)
 - Autonomic nervous system - regulates smooth muscle, cardiac muscle, and glandular activity at subconscious level (involuntary)
 - Parasympathetic
 - Sympathetic

PNS Structure

• Spinal roots
 • Ganglia
 • grouping of PNS neuron cell bodies
 • Nerves and branches
 – Cranial
 – Spinal
 – Peripheral
• Enteric Nervous System
• Sensory Receptors
Jortner, BS. Preparation and Analysis of the Peripheral Nervous System.

PNS supporting cells

Neuroglia
- **Satellite cells**—regulate exchange of nutrients and waste products
 - surround neuron cell bodies in ganglia
- **Schwann cells**—myelinate axons from PNS neurons
 - direct regeneration of damaged axons

Peripheral Nerve Organization

Normal Structure of Peripheral Nerve

Sampling the PNS
- Obtain samples from proximal and distal nerve levels
- Perfusion fixation preferred
 - EM: 2.5–3% glutaraldehyde
 - Paraformaldehyde (1–4%) is better for IHC, but it does not preserve myelin well
 - a small amount of glutaraldehyde (0.1–0.2%) will help preserve myelin
- Epoxy resin embedding—better resolution vs. H&E
- Morphometry, nerve fiber teasing
Histomorphology of Neuronal Damage/Death

- Neuronal necrosis
 - Stains/autofluorescence
- Chromatolysis
- Neuronophagia

“Dead Red” Neurons

Detecting Neuronal Degeneration

Chromatolysis

Satellitosis/Neuronophagia

Responses of Glial Cells

- Astrocytosis
- Myelin vacuolation
- Gliosis
- Gitter cells
- Inflammation
Astrocyte Activation

Alzheimer Type II Astrocytes

Myelin vacuolation/edema

Gliosis/Glial Nodules

Demyelination

Demyelination/Gitter Cells
Histomorphology of Injury to Axons

- Wallerian degeneration
- Spheroid formation
- Secondary demyelination
- Bands of Büngner

Digestion chambers

Spheroids

Neurotoxicology basics

- Adverse structural (neuroanatomical) or functional (neurochemical, physiological, or behavioral) effects on the nervous system following xenobiotic exposure during development and in maturity
 - CNS
 - PNS
 - Nerve endings
 - Effector organs
Neurotoxicology basics, cont
• Predisposed to injury due to complexity, limited repair capacity
• Functional/anatomic interrelatedness of distant parts
• High metabolic rate, blood flow
 – Glucose dependence
• High lipoprotein content
 – Oxidative injury, lipid peroxidation
 – Absorption of lipophilic compounds

Mechanisms of Neurotoxicity
• Neuronopathies
• Axonopathies
• Myelinopathies
• Toxicants affecting BBB integrity
 – Astrocyte targets
 – Vascular
• Neurocarcinogens
• Developmental neurotoxicants

Manifestations of Toxicologic Agents

Neuronopathies
• Toxicants targeting the neuron
 – Trimethyltin (TMT)
 – Metals
 • Manganese, methyl mercury, aluminum, lead, zinc toxicity/hypoCu
 – Drugs
 • 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
 • Chemotherapeutics
 – Doxorubicin, vincristine, cisplatin
 – Toxins
 • Clostridial toxins
 • Locoweed, yellowstar thistle
 – Neurotransmitter analogs
 – Nutritional
 • Pyridoxine (vitamin B6)

Clostridial Toxins
• Botulinum toxins produced by Clostridium botulinum
• Progressively increasing flaccid paralysis
 – Death due to respiratory failure
• Toxins cause retention of presynaptic vesicles @ cholinergic synapses

Botulism
Domoic Acid
- Glutamate analog produced by algae & diatoms that accumulates in shellfish
 - Amnesic shellfish poisoning
 - Neurologic disease in marine mammals
- Excitatory & cytotoxic effects on hippocampal neurons

Vitamin B₆ injury to DRG neurons (PNS)

Axonopathies
- Axon is the primary site of toxicity=chemical transection
 - β,β'-iminodipropionitrile (DPN)
 - Acrylamide
 - Carbon disulfide
 - N-hexane
 - Chemotheurapeutics
 - Vincristine
 - Organophosphates

Organophosphate Axonopathy

Myelinopathies
- Myelin destruction
 - Direct myelin damage
 - Toxicity to myelin producing cells
- Triethylin
- Bromethalin rodenticide
- Tellurium

Tellurium Myelinopathy
Toxicants affecting BBB integrity

- Increase vascular permeability
 - Polioencephalomalacia
 - Thiamine deficiency
 - Thiaminase containing foodstuffs
 - Lead, sulfur, or intoxicosis
 - Leukoencephalomalacia
 - Fumonisin mycotoxin

Polioencephalomalacia

- In carnivores, edema, vascular dilation, hemorrhage + neuronal necrosis of deep cortical grey matter/nuclei of cerebellum & brainstem
- Role for astrocytes?
- Different lesions in ruminants, consisting of cerebral edema & laminar necrosis of cerebral cortical grey matter
- Thiamine (Vitamin B12) is an important cofactor for enzymes involved in carbohydrate metabolism

Neurocarcinogens

- Genotoxins
 - Acrylonitrile
 - Methyl- and ethyl-nitrosurea (MNU & ENU)

Developmental Neurotoxicants

- Toxicants can induce overt malformations, histologic lesions, or persistent behavioral changes
 - Methanol/ethanol
 - Plant toxins
- Variation in timing of neuronal development & myelination

Plant teratogen cyclopamine
Cyclopamine as Anticancer agent

- Cyclopamine exerts teratogenic effect by inhibiting Hedgehog (Hh) pathway activation
 - Regulates growth & migration of neural progenitors
 - Mutations causing Hh activation seen in medulloblastomas
- Potential therapeutic agent treatment of medulloblastoma

Questions??