Bone Marrow, Blood, and Lymph Node Histology

William Matsui, M.D.

Objectives

- Become familiar with the histology of:
 - Blood
 - Bone marrow
 - Lymph node
 - Spleen

- Understand:
 - Development and regulation of hematopoiesis
 - Role of lymph nodes in immune regulation

Blood

- Fluid connective tissue
- Cells (formed elements)
 - Red blood cells
 - White blood cells
 - Platelets
- Extracellular matrix
 - Blood plasma serves as a solvent for a variety of solutes
 - Protein-rich matrix

Erythrocytes

- Greatest cellular constituent of the blood
- Biconcave discs
- Lack nucleus
- Contain Hemoglobin
 - Transport O₂, CO₂
 - Acid-base balance

Erythropoiesis

- Proerythroblast
- Basophilic erythroblast
- Polychromatic erythroblast
- Normoblast
- Reticulocyte

Erythropoiesis

- Marrow Maturation
- Time (h)
- Cell size 100 μm
- Mitochondria RNA content
- Hemoglobin

Red Blood Cell - Case

- 6 y.o. African American male
- 1 day severe leg and foot pain. Viral upper respiratory infection for 3 days.
- No current or past medical problems
- Family history of anemia
- What's next?

Red Blood Cell - Case

- Complete blood count

- White blood cells 12,000 (nl 5,000-10,000)
- % neutrophils 38%
- % lymphocytes 60%
- Hematocrit 20% (nl 37-42%)
- Platelets 460 (nl 350-500)

Red Blood Cell - Case

Normal

Patient

Red Blood Cell - Case

Anemia

- Blood loss
- Decreased RBC production - Anemia will ultimately result if the rate of RBC production is less than that of RBC destruction.
- Lack of nutrients, such as iron, B12, or folate.
- Bone marrow disorders or bone marrow suppression
- Low levels of trophic hormones which stimulate RBC production (EPO-renal failure, thyroid hormone, androgens).
- Other diseases (anemia of chronic disease).

- Increased RBC destruction
- Inherited hemolytic anemias (eg, hereditary spherocytosis, sickle cell disease, thalassemia major)
- Acquired hemolytic anemias (eg, Coombs'-positive autoimmune hemolytic anemia, thrombotic thrombocytopenic purpura-hemolytic uremic syndrome, malaria)

Sickle Cell Anemia (1)

- Valine for glutamic acid substitution in β-globin chain
- Leads to αβ(s)_2 hemoglobin tetramers
- Poorly soluble compared to nl αβ_2 Hb
- Polymerize at low pO₂ and pH leading to sickle red blood cells
- Results in occlusion of venous blood vessels
- Anemia from rapid degradation of sickle red blood cells

Sickle Cell Anemia (2)
White Blood Cells

- 5-10 x 10^6 WBC/ml in adults
- Defense against foreign substances
- Two pools of WBC in blood
 - Circulating pool (included in WBC count)
 - Non-circulating pool – marginating pool or group of cells that rest against blood vessel walls
- Five types, classified by:
 - Nuclear morphology
 - Polymorphonuclear
 - Mononuclear
 - Presence or absence of cytoplasmic granules and their staining properties (if present)

Neutrophils (PMNs)

- 40-75% of circulating WBC
- Life span is 2-3 days
- Diameter is 10-15um
- Single multi-lobed heterochromatic nucleus

- Primary granules (lysosomal granules)
 - Stain azurophilic
 - Contain lysozymes, defensins, elastase, acid phosphatase and myeloperoxidase
- Secondary granules (specific granules)
 - Specific to neutrophils
 - Stain pink or neutral
 - Contain lactoferrin, lysozyme, phagocytins, collagenases and cytochrome b
- Play a major role in protection against bacterial and fungal infections

Basophils

- Least numerous mature WBC
- Bi-lobed nucleus
- Granules
 - Large and abundant
 - Stain with basic dyes
- Contents
 - Heparin sulfate
 - Histamine
 - Slow reacting substance of anaphylaxis

- Mediate allergic responses
- Express a receptor for IgE
- Antigen binds to and crosslinks the IgE molecules
- Substances released from granules play a major role in the hypersensitivity reactions
- May lead to cardiovascular and respiratory collapse (anaphylaxis)

Eosinophils

- Bi-lobed nucleus
- Granules
 - Large refractile red or orange
 - Major basic protein
 - Toxic to parasites
 - Vasoactive agents
 - Agents that limit inflammatory response
Eosinophils

- **Immunity**
 - Undergo chemotaxis in response to bacterial products and complement components
 - Ingest and destroy antigen-antibody complexes
 - Important in defense against parasites
- **Mediate allergic response**
 - Express receptors for IgE
- **Attenuate inflammatory responses**
 - Preferentially attracted by substances released from basophils and mast cells
 - Release of histaminase moderates the potentially deleterious effects of the vasoactive agents

Monocytes

- **Life span of months to years**
- **3-8/100 WBCs**
- **Nucleus**
 - Large, eccentrically placed
 - Stains deep blue to purple
 - Indention becomes more pronounced with maturity
- **Cytoplasm**
 - Ground glass appearance
 - Blue-gray
 - Azurophilic granules

Monocytes

- Little function in circulating blood
- Migrate to peripheral tissues where they assume the role of macrophages
- Respond to presence of necrotic material and invading microorganisms
 - Large content of lysosomal enzymes
 - Engulf and destroy tissue debris and foreign material
 - Present antigens to adaptive immune system

Myeloid development

- **Myeloblast**
- **Promyelocyte**
- **Myelocyte**
- **Metamyelocyte**
- **Band Neutrophil**
- **Segmented Neutrophil**

Lymphocytes

- **Variable size (6-18um)**
 - Smallest are quiescent
- **Nucleus**
 - Intensely stained
 - Slightly indented
 - Spherical in shape
- **Cytoplasm**
 - Appears as a pale blue rim around nucleus

Lymphocytes

- **Main functional cell of adaptive immune system**
- **Most found in blood or lymph are “recirculating immunocompetent cells”**
 - T Lymphocytes (thymus-dependent)
 - Have a long life span
 - Involved in cell-mediated immunity
 - B Lymphocytes (B cells)
 - Variable life span
 - Involved in the production of circulating antibodies
 - Indistinguishable in blood smears or tissue section
Platelets
- Life span of 10 days
- 2-4um in diameter
- Exhibit an intensely stained core
- α-lysosomal granules: red-violet - azurophilic
- Clotting factors: fibrinogen, von Willebrand factor, thrombospondin, and fibronectin, adenine nucleotides
- Growth factors: platelet derived growth factor (PDGF)
- Chemotactic factors
- Vasoactive substances: serotonin

Megakaryocytes
- [Developmental pathways image]

Hematopoiesis
Regulate peripheral blood cell types and numbers
- Maintain adequate numbers of blood cell (homeostasis)
- Proper number of specialized cell types
- Increase cell production with changing needs
 - Granulocytes: bacterial infections
 - Eosinophils: parasitic infections
 - Erythrocytes: high altitude
- Prevent excessive cell production (leukemia)

Bone marrow histology
- Yellow Marrow: Mostly fat cells
- Red Marrow: Formation of blood cells
- Bone marrow cellularity = 100 - age

Hematopoietic development
- Mesoblastic phase (1-2 mos)
 - Blood islands of the yolk sac
 - Cells produce hemoglobin and become nucleated RBC's
- Hepatic phase (2-5 mos)
 - Normal RBC's produced in reticuloendothelial system (liver, spleen, thymus, etc.)
 - Initial production of myeloid and lymphoid cells
- Myeloid phase (5-9 mos)
 - Bone marrow is primary site of blood cell production

Bone marrow histology
- Hematopoietic cords
- Hematopoietic cells
- Stroma
- Microenvironment
- Vasculature
 - Sinusoidal capillaries
 - Endothelial cells
 - Reticular (adventitial cells)
Hematopoiesis

Regulation of HSC

Cells
- Bone marrow stromal cells
- Osteoblasts
- Endothelial cells

Extracellular matrix
- Fibronectin, collagen, vitronectin, tenascin

Molecules involved
- Cytokines - IL-3, SCF, Tie2
- Chemokines - CXC/R4/SSFR-1
- Morphogens - Notch, Wnt, BMP
- Adhesion molecules - VLA4, LFA-2, E-selectin, ICAM-1, VCAM-1

Function of stem cell niche
- Cellular homing
- Protection and survival of HSC
- Maintain pluripotency (prevent differentiation)
- Regulate self-renewal (asymmetric vs symmetric cell division)

Progenitors
Symmetrical Division
- Cells mature
- Lose some ability to divide

Stem Cells
Asymmetrical Division
- One daughter cell matures as the other remains as an exact copy of parent (self-renewal)
- Maintains stem cell pool

Regulation of Progenitors

Bone Marrow Case #1

- 28 y.o. female
- 3 months of heavy menstrual bleeding, 2 weeks of progressive fatigue
- No current or past medical problems
- No family history of bleeding

Bone Marrow Case #1

- Complete blood count

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>White blood cells</td>
<td>800 (nl 5,000-10,000)</td>
</tr>
<tr>
<td>% neutrophils</td>
<td>5%</td>
</tr>
<tr>
<td>% lymphocytes</td>
<td>95%</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>21% (nl 37-42%)</td>
</tr>
<tr>
<td>Platelets</td>
<td>35 (nl 350-500)</td>
</tr>
</tbody>
</table>
Normal Patient

Bone Marrow Case #1

Bone Marrow Failure (1)

• Aplastic anemia
 • Acquired - immune destruction of hematopoiesis
 • Induced by drugs
 • Following infections (hepatitis)
 • Inherited -
 • Fanconi Anemia - DNA repair mechanisms
 • Schwachman-Diamond - RNA processing
 • Dyskeratosis congenita - Telomerase

Bone Marrow Case #2

• 75 y.o. male
• 2 months of malaise, fevers for 3 days, no abnormal bleeding
• History of hypertension, smoking
• No family history of cancer or bleeding

Bone Marrow Failure (2)

• Infiltrative - marrow replacement
 • Leukemias
 • Myelodysplastic syndrome
 • Lymphoma
 • Other cancers
 • Fibrosis
 • Nutritional deficiencies - Vit B12
 • Bad infections (viral)

Bone Marrow Case #2

Bone Marrow Case #2

• Complete blood count

 - White blood cells: 62,000 (nl 5-10,000)
 - % neutrophils: 1%
 - % lymphocytes: 1%
 - % other: 98%
 - Hematocrit: 18% (nl 37-42%)
 - Platelets: 15 (nl 350-500)
Acute Myeloid Leukemia

- Expansion of myeloid cells in bone marrow and/or blood with blocked differentiation
- Arise from normal hematopoietic stem cells
- Many different genetic lesions
 - Chromosomal translocations, genetic instability
 - Clinical decisions based on chromosomal abnormalities

Lymphoid Anatomy

- Two major functional regions:
 - **Primary immune organs**
 - Sites of initial maturation and development of immune competent cells
 - B cells - bone marrow
 - T cells - thymus
 - **Secondary immune organs**
 - Sites of interaction between antigens and immune cells
 - Antigen driven replication and differentiation into effector cells

Peripheral (Secondary) Lymphoid Tissue

- **Lymph nodes**
 - Encapsulated
 - Interposed between lymphatic vessels (only)
- **Spleen lymphatic tissue**
 - Encapsulated
 - Interposed between lymph and blood circulation
- **Diffuse lymphatic tissue**
 - Unencapsulated
 - GI (tonsils, Peyer’s patches, appendix); Respiratory tract; Genitourinary
 - Found in the lamina propria where pathogens are likely to invade

Lymph Node Anatomy

Lymph Node Histology

- Capsule: Dense, irregular CT (collagen type I stains red brown)
- Trabeculae are extensions of the capsule
- Reticular tissue - framework (collagen III stains black with the Silver stain)
- Hilum - efferent lymph; entry and exit of blood vessels
Lymph Node Parenchyma

- **Cortex**
 - Primary, secondary nodules
 - B cells
- **Deep cortex**
 - Paracortex, juxtamedullary cortex, thymus dependent cortex
 - No nodules
 - T cells
- **Medullary cords**
 - Plasma cells synthesize and release antibodies into lymph flowing through the sinuses

Lymph Node Cortex

- **Primary follicle**
 - Naïve B cells
 - No germinal center
- **Secondary follicle**
 - Germinal Center
 - Antigen has been encountered
 - Looks pale because of plasmablasts: large euchromatic nuclei
 - Surrounded by T cells

Reacting Germinal Center

- **Dark zone**
 - Densely packed B lymphocytes separated by reticular cells
- **Light zone**
 - Immunoblasts/plasmablasts
 - Large cells, central nucleus, prominent nucleolus
 - T cells at periphery
- **Mantle zone**
 - Naïve B and T cells

Medullary Cord and Sinus

- **Medullary cord**
 - Lymphocytes
 - Plasma cells
- **Medullary sinus**
 - Macrophages

Lymph Flow

- Afferent lymphatics → subcapsular sinus → trabecular sinuses → medullary sinus → efferent lymphatics

Lymphocyte Trafficking

- Naïve B and T lymphocytes home to specific sites within the lymph node via peripheral blood
- B cell homing include:
 - The primary and secondary cortical follicles
 - Medullary cords: plasma cells release immunoglobulins into the efferent lymph
- T cell homing
 - Primarily paracortex
Lymph Node Case #1

- 8 y.o. female
- "Lump" in neck growing over 3 weeks
- No past medical problems
- No family history of cancer
- Physical exam - enlarged, rubbery, movable 6 cm lymph node in lateral neck

What next?

Lymph Node Case #1

- Lymph node biopsy

Lymphadenopathy (1)

- **Bacterial** - Localized Streptococcal pharyngitis; skin infections; *Brucella*, plague; cat scratch disease; diphtheria; chancroid; rat bite fever; brucellosis; leptospirosis, lymphogranuloma venereum; typhoid fever
- **Viral** - Human immunodeficiency virus; Epstein-Barr virus; herpes simplex virus; cytomegalovirus; mumps, measles, rubella; hepatitis B; dengue fever
- **Mycobacterial** - *Mycobacterium tuberculosis*; atypical mycobacteria
- **Fungal** - Histoplasmosis; coccidioidomycosis; cryptococciosis
- **Protozoal** - Toxoplasmosis; Leishmaniasis
- **Spirochetal** - Secondary syphilis; Lyme disease

Lymph Node Case #2

- 58 y.o. male
- "Lump" in neck growing over 2 weeks. Fever for 1 month, night sweats for 2 weeks, 20 lbs weight loss
- No past medical problems
- No family history of cancer
- Physical exam - enlarged, rubbery, movable 3 cm lymph node in lateral neck, 2 cm supraclavicular lymph node on right

What next?

Cat Scratch Disease

- Caused by *Bartonella henselae*
- Most cases resolve spontaneously
- May disseminate to organs (liver, spleen)
- Unclear role for antibiotics in localized disease
Lymph Node Case #2

- Lymph node biopsy

Hodgkin’s disease

- Characterized by Reed-Sternberg cells
- Derived from B cells
- Affects kids and elderly
- May be caused by EBV
- May be associated with “B” symptoms - fever, night sweats and weight loss
- Highly curable with chemotherapy

Lymphadenopathy (2)

- Cancer - Squamous cell cancer head and neck; metastatic; lymphoma; leukemia
- Lymphoproliferative angioimmunoblastic lymphadenopathy with dysproteinemina
- Autoimmune lymphoproliferative disease - Rosai-Dorfman’s disease, hemophagocytic lymphohistiocytosis
- Immunologic - Serum sickness; drug reactions (phenytoin)
- Endocrine - Hypothyroidism; addison’s disease

The Spleen

Functions

- Site of fetal hematopoiesis
- Reservoir for red blood cells
- Filters blood
- Iron retrieval
- Immune regulation

Spleen

- Capsule
 - Dense connective tissue
- White pulp
 - lymphoid tissue
- Red pulp
 - sinusoids

- White pulp
 - lymphoid tissue
- Red pulp
 - sinusoids
- Red blood cells
- Periarterial lymphoid sheath
 - lymphocytes
Spleen

- Central artery
- Periarterial lymphoid sheath
- Mantle zone
- Trabecular vein

Splenic Vasculature

MALT

Mucosal associated lymphoid tissue
- GALT: gut-associated lymphoid tissue
- BALT: bronchial/tracheal-associated lymphoid tissue
- SALT: skin associated lymphoid tissue
- etc...

- Antigen presentation of luminal antigens to MALT by specialized epithelial cells (M cells)
- Primary immunoglobulin isotype produced is IgA (secretory)
- Intraepithelial lymphocytes also play a role in immune surveillance at mucosal surfaces.