Going Beyond Clinical Care to Reduce Health Care Spending

Findings From the J-CHiP Community-based Population Health Management Program Evaluation

Shannon M.E. Murphy, MA,* Douglas E. Hough, PhD,† Martha L. Sylvia, MBA, RN, PhD,‡ Melissa Sherry, MPH,* Linda J. Dunbar, PhD,* Raymond Zollinger, MBA, MD,§ Regina Richardson, MBA, RN, BSN, CCM, * Scott A. Berkowitz, MBA, FACC, MD,∥ and Kevin D. Frick, PhD∥

Background: Addressing both clinical and nonclinical determinants of health is essential for improving population health outcomes. In 2012, the Johns Hopkins Community Health Partnership (J-CHiP) implemented innovative population health management programs across acute and community environments. The community-based program involved multidisciplinary teams [ie, physicians, care managers (CM), health behavior specialists (HBS), community health workers, neighborhood navigators] and collaboration with community-based organizations to address social determinants.

Objectives: To report the impact of a community-based program on cost and utilization from 2011 to 2016.

From the *Johns Hopkins HealthCare LLC, Glen Burnie; †Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD; ‡Medical University of South Carolina, College of Nursing, Charleston, SC; §Johns Hopkins Community Physicians, Medical Affairs; ¶Johns Hopkins University School of Medicine; and ∥Johns Hopkins University Carey Business School, Baltimore, MD.

Lindsay Andon, Jenny Bailey, William Baumgartner, Michele Bellantoni, Edward Beranek, Robert Blum, Romsa Tony Boonyasati, Patricia M.C. Brown, Daniel J. Brotman, John Colmers, Amy Deutschendorf, Samuel C. Durso, Stuart Erdman, Anita Everett, Lisa Filbert, Michael Fingerhood, Daniel Ford, Peter Greene, Dalal Haldeman, David Hellmann, Debra Hickman, Eric E. Howell, Sarah Kachur, Steven Kravet, Anne Magleby, Diane Reel, Judy Reitz, Melissa Richardson, Paul B. Rothman, Carol Sylvester, Vince Truant, Hunter Young are contributed equally.

The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the authors.

The research presented here was conducted by the awardee. Findings might or might not be consistent with or contrary to the findings of the independent evaluation contractor.

Supported by Grant number 1C1CMS331053 from the Department of Health and Human Services or any of its agencies.

Reprints: Shannon M.E. Murphy, MA, Johns Hopkins HealthCare LLC, 6704 Curtis Court, Glen Burnie, MD 21060. E-mail: smurphy@jhhc.com.

Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s website, www.lww-medicalcare.com.

Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.

The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the US Department of Health and Human Services or any of its agencies.

The research presented here was conducted by the awardee. Findings might or might not be consistent with or contrary to the findings of the independent evaluation contractor.

Supported by Grant number 1C1CMS331053 from the Department of Health and Human Services or any of its agencies.

Reprints: Shannon M.E. Murphy, MA, Johns Hopkins HealthCare LLC, 6704 Curtis Court, Glen Burnie, MD 21060. E-mail: smurphy@jhhc.com.

Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s website, www.lww-medicalcare.com.

Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
explains only 10%-20% of variation in health outcomes (ie, life expectancy and premature mortality), the majority of US health care expenditures is for medical care.1,13,14 Without mechanisms to bring together data, financing, leadership, and a shared vision across providers, social services, and community organizations, health care delivery systems have focused on narrow care coordination programs that fail to address the social factors that contribute significantly to program success.15

Patient Protection and Affordable Care Act of 2010 created the Center for Medicare & Medicaid Innovation (CMMI) to support the development and testing of new payment and delivery models that aim to achieve better patient care, healthier communities, and lower costs.16 CMMI-supported models have since been designed to achieve a shared vision of improved health across geographic areas by focusing on the social factors that affect population health, in addition to health care, for improving health and reducing costs.14 The majority of these models utilize integrated care teams that address behavioral, social, and medical needs.17

THE JOHNS HOPKINS COMMUNITY HEALTH PARTNERSHIP

The Johns Hopkins Community Health Partnership (J-CHIP) was created as a regional approach to health care transformation in Baltimore, Maryland, and received $19.9 M in funding under the Health Care Innovation Awards (HCIA) from CMMI.18,19 J-CHIP deployed a comprehensive set of care coordination programs across the continuum of traditional, and nontraditional, health care settings [ie, acute care hospitals, emergency departments (EDs), ambulatory clinics, skilled nursing facilities, patient homes, the local community]. The intervention augmented care management with programs designed to address barriers to health experienced by the East Baltimore community surrounding Johns Hopkins Hospital and Johns Hopkins Bayview Medical Center. This urban, underserved area has an average life expectancy as much as 20 years shorter than other more affluent, nearby neighborhoods, reflecting higher rates of medical and psychosocial risk factors (eg, prevalence of cardiovascular disease, infant mortality, substance use, mental illness).20,21 Detailed information on the J-CHIP initiative is available or forthcoming in the literature.18,19,22

J-CHIP’s COMMUNITY-BASED PROGRAM DESCRIPTION

One of the main components of J-CHIP was the community-based population health management program for high risk, chronically ill Medicaid and Medicare beneficiaries. The program, embedded within 8 primary care sites throughout East Baltimore, was designed to improve care coordination and address the clinical and social determinants of health. At each site, multidisciplinary care coordination teams were formed with primary care providers, care managers (CM), health behavior specialists (HBS), and community health workers, as well as neighborhood navigators for residents in designated neighborhoods.

For those with chronic medical needs, the role of the site-embedded CMs was to provide care coordination, an essential component of care management programs that helps reduce unnecessary and avoidable utilization, while ensuring that proper care is delivered at the most appropriate time and place.

Participants with depression, bipolar, anxiety, obesity, or substance abuse issues were referred to site-embedded HBSs. HBSs determined patients’ mental health and emotional needs, developed treatment plans, delivered disease-specific, protocol-based interventions, and provided referrals for psychiatric and pharmacological treatment when needed. Integration of behavioral health enabled the team to assess and treat the mental and behavioral health issues that often co-occur with chronic medical conditions.22

Outreach and engagement, building trust with the community, and linking beneficiaries to resources to help address the social determinants of health were all roles taken on by the community health workers on the care team. In addition, in designated areas, a group of volunteers who lived in target communities, known as neighborhood navigators, were trained and paid a stipend to provide social support and linkages to community resources for their neighbors (regardless of insured status or type of insurance) with oversight from a local community organization. Collaboration with community-based organizations (ie, Sisters Together and Reaching the Men and Families Center) for the community health worker and neighborhood navigator roles was instrumental in addressing the social determinants of health.

The J-CHIP community-based program was initiated at most primary care sites between December 2012 and June 2013, with implementation lasting through March 2016. Recruitment began with Priority Partners Managed Care Organization (PPMCO) Medicaid beneficiaries and was expanded to Medicare beneficiaries in June 2013. Chronically ill adult (age 18+) participants were identified based on their risk of future hospitalization, as indicated by predictive modeling, or through physician referral. All eligible program participants were outreach by community health workers to engage and assess clinical and social needs. Those with complex medical or behavioral health needs were referred to CMs and/or HBSs, respectively. Participants residing in select East Baltimore neighborhoods may have also received assistance with social support and linkage to community services by a neighborhood navigator.

While innovation models are showing great promise in addressing medical and nonmedical needs to improve health outcomes, little information is available on effective strategies to reduce costs.23,24 Measuring and detecting cost savings for innovation models can be challenging given the time urgency placed on both the completion of the evaluation and the observation of savings.25 Detecting statistically significant savings is made even more difficult by the high variability of cost data, particularly for high-risk populations prone to high-end outliers.

The purpose of this paper is to estimate the cost savings achieved by J-CHIP and to discuss the statistical and practical implications of the findings for the adoption of this approach to health care innovation. Because of the varying structure and target populations for each of the J-CHIP components, this paper focuses on the impact of the community-based population health management program. Specifically, the analysis evaluates whether J-CHIP’s innovative approach to population health management achieved the desired reduction in costs and acute utilization for Medicaid and Medicare beneficiaries in East Baltimore.
METHODS

The current analysis evaluates the impact of the J-CHiP program on 2 distinct populations: Medicaid and Medicare (including dual eligibles). The populations are analyzed separately due to differences in implementation timing, data availability, and the underlying qualification differences for Medicaid versus Medicare beneficiaries.26

A detailed description of the evaluation methods is available in the literature27 (see the Appendix, Supplemental Digital Content 1, http://links.lww.com/MLR/B569, for additional design information).

Participants

The analysis employs a population-based framework, similar to an intention-to-treat model, to evaluate the program impact. On the basis of this framework, a cohort of J-CHiP participants is identified for each payer at a specific point in time (August 2013 for Medicaid and August 2014 for Medicare). This represents a period, after the intervention was rolled out to all of the original sites, when enrollment had reached at least half of the target, while also ensuring that the cohort had sufficient follow-up time (12 mo) to observe the intervention effect. The cohorts include all eligible beneficiaries, regardless of their level of engagement. Inclusion of the entire target population is ideal for making decisions regarding program funding and reduces the selection bias common to other quasi-experimental sampling approaches.27

To measure the additive effect of the CM and HBS components, 2 additional cohorts are identified. In addition to the community health worker outreach and assessment services offered to the full cohort, participants in the CM and HBS cohorts received more intensive intervention services. The CM cohort includes a subset of J-CHiP participants who received case management assistance by a CM for at least 3 months. The HBS cohort is limited to J-CHiP participants with a mental or behavioral health condition who had at least 1 contact with an HBS. Inclusion of these cohorts helps measure the differential impact of J-CHiP for those who received more intensive intervention services as compared with the full cohort under the intention-to-treat design.

The comparison group is identified from a pool of similar Medicaid and Medicare members who received primary care from any other nonintervention site. J-CHiP participants are propensity-score matched to comparison participants based on demographic characteristics (ie, age, sex, race, residence location), baseline health risk indicators (ie, predicted risk, condition prevalence), and preperiod utilization (ie, resource utilization level, ED visits, admissions, readmissions, and costs).

To improve baseline comparability between groups and to reduce the influence of confounding factors, a number of exclusion criteria are applied. The analysis is limited to beneficiaries enrolled in Medicaid or Medicare fee-for-service coverage for at least 2 years to help ensure that changes over time reflect participant-level changes and not changes in case mix due to plan enrollment and/or coverage. Beneficiaries with end-stage renal disease are excluded from both groups because they are typically diverted to a different care management program. Further information on exclusion criteria can be found in the Appendix (Supplemental Digital Content 1, http://links.lww.com/MLR/B569).

Data

The evaluation uses health plan enrollment data, claims, program records, Johns Hopkins Adjusted Clinical Groups (ACG) risk data, and predictive risk scores covering the period from December 2011 through March 2016. The evaluation dataset includes 2–4 yearly measures per participant corresponding to the year before and up to 3 years after program implementation. The primary predictor variables include indicators for group (J-CHiP vs. comparison) and study period (pre vs. post). The claims-based outcomes include counts of ED visits, inpatient admissions, and 30-day all cause readmissions, as well as paid costs, per member per year (PMPY). For Medicaid, both medical and pharmacy costs are included. For Medicare, costs are limited to medical claims due to the lack of timely pharmacy claims data.

Evaluation Periods

The study periods are specific to each payer due to the staggered implementation of the Medicaid (December 2012) and Medicare (June 2013) interventions. The “pre” period corresponds to the year before implementation and the “post” period represent the period between full program implementation (corresponding to the cohort identification dates noted above) and the end of the evaluation period (up to 32 mo for Medicaid and 20 for Medicare). The interim (ramp-up) period between the pre and post periods is excluded from the analysis to acknowledge the need for sites to refine the interventions and recruit participants. The ramp-up period is longer for Medicare (ie, 13 vs. 8 mo) due to the slower recruitment rate and the larger enrollment targets, as compared with Medicaid (see the Appendix, Supplemental Digital Content 1, http://links.lww.com/MLR/B569 for the more information on the evaluation periods).

Analysis

The J-CHiP evaluation uses a difference-in-difference design.23 The outcomes are modeled using the generalized estimating equations technique and bootstrapped 95% confidence intervals (CI). Differences are measured using Poisson and normal distributions for the utilization and cost outcomes, respectively. The primary model parameter used to measure program impact is the interaction between group and study period. All analyses are risk-adjusted using the matching covariates and total post period observation length, and weighted by the proportion of the year observed. For each outcome, the analysis is conducted 3 times using the full, CM, and HBS cohorts. The entire analysis is also stratified by payer.

RESULTS

Participant Characteristics

The final sample includes 3268 study participants (1398 Medicaid and 1870 Medicare) with 50% in each study group. The large majority of J-CHiP participants are also included in the CM cohorts (79% Medicaid and 87% Medicare) while smaller portions are in the HBS cohorts (52% Medicaid and
The comparative analysis results for the CM and HBS cohorts vary by payer. For the CM cohort, both payers demonstrated cost savings for J-CHiP participants (−$3051 PMPY for Medicaid and −$246 PMPY for Medicare), although the differences are not statistically significant. For Medicaid, the estimated savings for the CM cohort was more than double that of the full cohort (−$3051 vs. −$1171 PMPY, respectively), while the opposite was found for Medicare (−$246 PMPY for CM vs. −$476 for full). The HBS cohort also exhibited nonsignificant savings for Medicaid (−$2038 PMPY) but not for Medicare where J-CHiP participant costs increased more than nonparticipants (+$1980 PMPY).

ED Visits

The impact of J-CHiP on the number of ED visits is relatively small and mixed (Table 3). For the full cohort of J-CHiP participants, the ratio of incident rate ratios (IRRs) demonstrates a small improvement over the comparison group for Medicaid (ratio = 0.97), and slightly worse results for Medicare (ratio = 1.02), although neither difference is statistically significant. For the CM cohort, both payers exhibited similar results for participants and nonparticipants (ratio = 0.99). For the HBS cohort, the IRRs increased more for participants than nonparticipants (ratio = 1.08 for Medicaid and 1.09 for Medicare), although the increases were not statistically significant.

Admissions

As reported in Table 4, the analysis showed nonsignificant decreases in the admission rate for J-CHiP Medicaid participants in the CM and HBS cohorts (ratio of IRRs = 0.91 for CM and 0.92 for HBS). The rate for the full Medicaid cohort was relatively unchanged (ratio = 1.01). For Medicare, all 3 cohorts showed an increase in the admission rate for J-CHiP participants as compared with nonparticipants (ratio = 1.08 for full and 1.09 for CM), and the increase for the HBS cohort was statistically significant (ratio = 1.28, 95% CI = 1.01–1.65).

Readmissions

J-CHiP’s impact on readmission rates varied by payer (Table 5). For Medicaid, the CM and HBS cohorts showed nonsignificant improvements in the number of readmissions (ratio of IRRs = 0.84 for CM and 0.74 for HBS), although the full cohort did not experience the same improvement (ratio of IRRs = 1.03). For Medicare, all 3 cohorts exhibited increases in the readmission rate that were larger than the changes for the comparison group (ratio = 1.29 for full and CM, and 1.24 for HBS), although none were statistically significant.

DISCUSSION

Summary

The analysis failed to detect statistically significant cost savings for the J-CHiP community-based population health management program. However, from a health care innovations perspective, the results highlight promising aspects of the J-CHiP program and also indicate areas in need of improvement.

For Medicaid, the full cohort of program participants experienced smaller cost increases than similar nonparticipants, although this savings (or cost avoidance) was not statistically significant. The PMPY cost savings rate was even greater for...
participants who received more intensive intervention services, particularly those working with a CM for at least 3 months. After accounting for implementation costs, these results reflect a return on investment (ROI) ranging from −2% (approximately the break-even point) for the full cohort to 154% for the subset that received more intensive services with a CM. Program participation was also associated with improved admission and readmission rates, but the (nonsignificant) improvement was only detected for the CM and HBS cohorts and not the full J-CHiP group. J-CHiP did not appear to have an impact on ED visits.

Although the J-CHiP program generated promising findings for Medicaid, the results for Medicare were smaller in magnitude and more mixed. The full cohort of Medicare participants showed a slight (nonsignificant) cost savings that was less than half of the savings for Medicaid (−$476 vs. −$1171 PMPY) and reflects an ROI of −60%. There was no evidence of decreased utilization for Medicare program participants, even with more intensive CM and HBS services.

In terms of program components, the overall J-CHiP approach of addressing the medical and nonmedical determinants of health using multidisciplinary care teams shows some promise as a method for reducing costs and acute utilization, particularly for Medicaid beneficiaries. Increased services as provided by CMs and HBSs also appeared to enhance the benefit of program participation. Integration of the HBS within the care team did not necessarily show better results over traditional CM alone, and the results for the Medicare HBS cohort were significantly worse than expected.

Implications and Limitations

Consideration of both the statistical and practical implications of the results is important for drawing conclusions about J-CHiP. Although the results did not achieve statistical significance, the improvement and savings observed in the Medicaid cohort were material, suggesting this health care innovation’s promise. On the basis of these findings, policy makers should be encouraged to consider implementing programs like J-CHiP for Medicaid beneficiaries, but defer applying the program to Medicare beneficiaries until a favorable impact can be achieved through further program modification.

TABLE 2. Adjusted Cost Results Per Member Per Year by Cohort and Payer

<table>
<thead>
<tr>
<th>Participant Cohort</th>
<th>J-CHiP Pre/Post Difference: Mean (CI)</th>
<th>Comp Pre/Post Difference: Mean (CI)</th>
<th>Difference-in-Difference: Mean (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicaid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>$2536 (−$65–$5386)</td>
<td>$3706 ($1314–$6276)*</td>
<td>−$1171 (−$4968–$2145)</td>
</tr>
<tr>
<td>CM</td>
<td>$2058 (−$931–$5319)</td>
<td>$5109 ($2184–$8260)*</td>
<td>−$3051 (−$7517–$994)</td>
</tr>
<tr>
<td>HBS</td>
<td>$2151 (−$1953–$6322)</td>
<td>$4189 ($618–$7848)*</td>
<td>−$2038 (−$7236–$3157)</td>
</tr>
</tbody>
</table>

TABLE 3. Emergency Department Visit Results Per Member Per Year by Cohort and Payer

<table>
<thead>
<tr>
<th>Participant Cohort</th>
<th>J-CHiP Pre/Post Difference: IRR (CI)</th>
<th>Comp Pre/Post Difference: IRR (CI)</th>
<th>Difference-in-Difference: Ratio of IRRs (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicaid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>0.96 (0.87–1.08)</td>
<td>1.00 (0.88–1.13)</td>
<td>0.97 (0.81–1.14)</td>
</tr>
<tr>
<td>CM</td>
<td>0.98 (0.87–1.12)</td>
<td>0.99 (0.87–1.16)</td>
<td>0.99 (0.80–1.18)</td>
</tr>
<tr>
<td>HBS</td>
<td>1.05 (0.88–1.27)</td>
<td>0.98 (0.82–1.20)</td>
<td>1.08 (0.82–1.37)</td>
</tr>
</tbody>
</table>

TABLE 4. Admission Results Per Member Per Year by Cohort and Payer

<table>
<thead>
<tr>
<th>Participant Cohort</th>
<th>J-CHiP Pre/Post Difference: IRR (CI)</th>
<th>Comp Pre/Post Difference: IRR (CI)</th>
<th>Difference-in-Difference: Ratio of IRRs (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medicaid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>0.87 (0.76–0.98)*</td>
<td>0.86 (0.75–0.99)*</td>
<td>1.01 (0.83–1.22)</td>
</tr>
<tr>
<td>CM</td>
<td>0.85 (0.74–0.97)*</td>
<td>0.93 (0.80–1.07)</td>
<td>0.91 (0.75–1.12)</td>
</tr>
<tr>
<td>HBS</td>
<td>0.81 (0.67–0.95)*</td>
<td>0.88 (0.73–1.04)</td>
<td>0.92 (0.71–1.17)</td>
</tr>
</tbody>
</table>

Copyright © 2018 Wolters Kluwer Health, Inc. All rights reserved.
Reflection on the mixed Medicare results suggests that the Medicare population showed less promising results for multiple reasons. The first is that the J-CHIP CM and community health worker staff were relatively new in caring for Medicare beneficiaries, in comparison to their long-standing history with Medicaid. Thus, the methods for identifying and intervening with beneficiaries may not have been sufficiently tailored to the needs of the Medicare population. A second reason may be that Medicare beneficiaries reported rates of nonmedical barriers to care (eg, lack of transportation, housing, food, medication costs) approximately half the rates for Medicaid; as a result, the J-CHIP interventions may not have had as much opportunity to improve social determinants of health for Medicare beneficiaries.18

In light of the less promising Medicare results and the hypothesized reasons behind the discrepancies, program enhancements have been implemented to better suit the unique needs of the Medicare population.24 These enhancements primarily include the incorporation of caregiver support services and increased screening for dementia. Further testing is underway to determine if these Medicare program innovations lead to better cost and utilization outcomes.

Another important consideration relevant to both Medicaid and Medicare beneficiaries is that changing health behaviors and addressing the social determinants of health require tackling issues that have accumulated over a lifetime and are a deep-seated part of the environment. These issues are difficult to address and slow to change, and understanding impacts of programs that work to improve social determinants may require longer study periods to observe an effect than the 20–32 months included in the current analysis.

One of the most novel components of the J-CHIP population health management program was the partnership with community-based organizations to assist with addressing the nonmedical determinants of health. These partnerships were established after initial program experience and engagement results reflected the long-standing strained relationship between

The mixed, and at-times negative, results for the HBS cohort highlight another area in need of further review and improvement. Integration of behavioral health did not appear to improve results more than traditional CM, particularly for Medicaid. The poor Medicare findings may be partly an artifact of the dataset which, by Centers for Medicare & Medicaid Services regulation, did not include Medicare claims data with substance abuse diagnoses. Without this data, it was difficult to measure the full impact of the HBS, particularly considering the high comorbidity of mental health conditions with substance abuse. Beyond the data limitations, a few modifications have already been implemented for post-J-CHIP demonstrations in an effort to improve the effectiveness of the HBS intervention. One is related to the improved detection of behavioral health conditions, most notably dementia. The second modification is to allow direct referrals to the HBS, without requiring prior review by a CM. This change should increase access to behavioral health services for those who do not necessarily need full care coordination. Third, the behavioral model has evolved to be more regionally based, with some modification in the areas of behavioral focus, and with more intensive psychiatry involvement. Additional evaluation is underway to determine whether these enhancements lead to improved cost and utilization outcomes.

The current evaluation focused on assessing the impact of the J-CHIP program on paid costs and utilization. Although these are important health outcomes, we were unable to measure other benefits of the program, such as improved trust with the community, increased social capital in the targeted neighborhoods, and health benefits experienced by individuals hired and trained from the community, that also have significant value as outcomes and should be considered in future evaluations to provide further insight into societal ROI.

In summary, after considering the promising, albeit nonsignificant, results for Medicaid, as well as the challenges in detecting statistical significance, policy makers should be encouraged to consider implementing programs like J-CHIP for Medicaid beneficiaries. However, substantive adjustments are needed when applied to Medicare beneficiaries in order for the innovation to achieve more favorable, consistent outcomes.

ACKNOWLEDGMENTS

The authors wish to acknowledge the late Dr Fred Brancati for his instrumental role in the launch of the J-CHIP program and the development of the evaluation design described in this paper. Others who made valuable contributions to the acquisition and/or analysis of the data include Chorng Biann, Jonathan Goodhue, and Tom Richards.

REFERENCES

