Sickle Cell Disease: Stroke and Other Complications

Hematology Fellows Conference
July 13, 2012
John J. Strouse, MD, PHD
Pediatric and Adult Hematology
Disclosures

• I have nothing to disclose.

• Objectives
 • Recognize the stroke and other central nervous system complications of SCD
 • Describe the evaluation of fever in people with SCD
 • Describe the basic management of complications of SCD
Outline

- Sickle Cell Basics
- Fever/Infection
- Priapism
- Biliary tract disease
- Stroke
- Acute Anemic Episodes
- Changes in Vision
Median Life Expectancy (Years)

Sickle Cell Research for Treatment and Cure, NIH, NHLBI, DHHS, 2002.
Genotypes

- Sickle Cell Anemia (HbSS)
 - Most common (60-65%)
 - On average most severe
- Sickle C disease (HbSC)
 - Less common (20-30%)
 - More mild disease
- Sickle-β null thalassemia (HbSβ0)
- Sickle-β plus thalassemia (HbSβ+)
Predicting Severity in HbSS

- Definitions of severe disease
 - Death or stroke
 - Frequent hospitalization for severe pain
 - Frequent acute chest syndrome

- Influenced by improvements in care
 - Prevention of infection
 - Empiric treatment and supportive care
Predicting Severity

The Old
- Dactylitis < 1 year
- In 2nd year of life
 - Hb < 7 g/dl
 - WBC >20,000/ul
- Alpha thalassemia

The New
- WBC >20,000/ul
- Network Models
 - Blood transfusion
 - ↑ Bilirubin
 - ↑ Reticulocytes
 - ↑ WBC
 - ↑ MCV
- Male sex
- Asthma

Asthma

- Similar prevalence in SCD (~20%)
- Associated with increased rate of
 - Admission for pain (200% increase)
 - Acute chest syndrome (100% increase)
 - Transfusion (60% increase)

Sickle Cell Mutation (stripes) and Malaria (green)
Case Identification

- Newborn screening: all 50 states and D.C.
- SCD in 1 in 2500 newborns
 - 1 in 346 African-Americans
 - Started in 1987 after penicillin prophylaxis study
- Increasing at risk populations in U.S.
 - Hispanic children
 - Arab, Turkish and Indian immigrants
 - African immigrants not screened at birth

http://www.cdc.gov/genomics/training/books/21stcent4a.htm#Chapter22
Prevent Infections

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Children</th>
<th>Adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccinations</td>
<td>Prevnar-13, Influenza, HIB, Pneumovax, Menactra</td>
<td>Influenza, Pneumovax</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Penicillin 125/250 BID</td>
<td>RarelyUsed</td>
</tr>
<tr>
<td>Avoid exposures</td>
<td>Reptiles, amphibians Influenza vaccination for family members</td>
<td>Same</td>
</tr>
</tbody>
</table>
Cases of Invasive Pneumococcus per 100,000 Person-Years

<table>
<thead>
<tr>
<th>Age</th>
<th>Pre-Prevnar 1995-99</th>
<th>Post 2001-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 years</td>
<td>3630</td>
<td>335</td>
</tr>
<tr>
<td>< 5 years</td>
<td>2044</td>
<td>134</td>
</tr>
<tr>
<td>> 5 years</td>
<td>161</td>
<td>99</td>
</tr>
</tbody>
</table>
Pneumococcus Returns!

Influenza

• Greatly increased risk of hospitalization
 • For SCD 56 times that of children <18 years
 • Similar severity to other hospitalized children
• Proportion with ACS and admitted to ICU
 • Seasonal influenza A or B 13% 3%
 • Epidemic H1N1 influenza 34% 17%
• H1N1 more severe and 8% hospitalized

Fever

- Emergent evaluation of fever $\geq 101.5^\circ$
 - CBC with differential, retic, blood culture
 - Urinalysis, urine culture
 - Chest x-ray
- Empiric intravenous antibiotics
- Hospitalization if < 3 years of age
 - Unable to reliably return to hospital
 - High risk clinical features
Priapism

- Prolonged painful erections
- Seek medical attention if ≥ 2 hours
- Frequency increases with puberty
- Prevention
 - Decrease endogenous androgens
 - Other therapies unproven
 - On-going study of daily sildenafil
Priapism

• Home management
 • Empty bladder
 • Analgesics
 • Hydration
 • Gentle exercise

• Hospital management
 • IV hydration and analgesics
 • Aspiration and irrigation if prolonged
 • Surgical shunting if refractory
Biliary Tract Disease

- Cholelithiasis
 - Pigment stones >50% with HbSS and 20% with HbSC by 23 years of age
 - Risk of stone correlated with total bilirubin
 - Cholecystectomy only if symptomatic

- Acute cholecystitis
 - Pre-operative transfusion
 - Recommend admission even after elective uncomplicated laparoscopic cholecystectomy
Biliary Tract Disease

- Common bile duct obstruction
 - Frequent at presentation of cholecystitis
 - Recommend ERCP, cholecystectomy
 - Occasional patients have frequent recurrences

Large stone obstructing the common bile duct at the head of the pancreas
CNS COMPLICATIONS OF SCD

NORMAL

COGNITIVE DEFICITS

SILENT INFARCT

STROKE

ICH/SAH

DEATH
Age of First CVA by Hb Genotype

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Risk factor</th>
<th>Odds ratio (95% CI)</th>
<th>p-value</th>
<th>Participants</th>
<th>Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Houston et al. (1997)</td>
<td>Homocysteine (> median)</td>
<td>3.5 (1.1–12)</td>
<td>0.03</td>
<td>16 with stroke 83 without stroke</td>
<td>50% adults, corrected for age, stroke type not specified</td>
<td>[66]</td>
</tr>
<tr>
<td>Miller et al. (2001)</td>
<td>Silent cerebral infarct</td>
<td>14</td>
<td>0.006</td>
<td>248 children</td>
<td>Infant cohort of the CSSCD</td>
<td>[67]</td>
</tr>
</tbody>
</table>

Prior TIA	56 (12–285)	<0.001	2436 children and adults with HbSS
Steady-state Hb (per g/dl)	1.9 (1.3–2.6)	<0.001	
ACS within 2 weeks	7 (1.8–27)	0.001	
ACS rate (event/year)	2.4 (1.3–4.5)	0.005	
SBP (10 mm increase)	1.3 (1.03–1.7)	0.033	

Hypertension	4.1 (2.9–5.7)	<0.0001	255 acute strokes
Diabetes mellitus	2.2 (1.2–3.9)	<0.05	among 69,586
Hyperlipidemia	6.9 (2.9–14)	<0.0001	discharges with
Renal disease	4.2 (2.4–6.8)	<0.0001	diagnosis of sickle cell disease
Atrial fibrillation	4.9 (2.2–9.5)	<0.0005	

ACSA: Anterior cerebral artery; ACS: Acute chest syndrome; CBV: Cerebral blood flow velocity; CSSCD: Cooperative Study of Sickle Cell Disease; dICA: Distal internal carotid artery; Hb: Hemoglobin; HbSS: Sickle cell anemia; MCA: Middle cerebral artery; SaO2: Oxygen saturation; SBP: Systolic blood pressure; STOP: Stroke Prevention Study; TCD: Transcranial Doppler ultrasound; TIA: Transient ischemic attack.
Risk Factors for Hemorrhagic Stroke

<table>
<thead>
<tr>
<th>Factor</th>
<th>Odds Ratio (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady-state Hb (for every 1 g/dl decrease)</td>
<td>1.6 (1.1–2.4)</td>
<td>0.013</td>
</tr>
<tr>
<td>Steady-state leukocyte count for every 5000/µl increase</td>
<td>1.9 (1.7–2.2)</td>
<td>0.026</td>
</tr>
<tr>
<td>Hypertension</td>
<td>NC (1.7–NC)</td>
<td><0.05</td>
</tr>
<tr>
<td>Events in the last 14 days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transfusion of RBCs</td>
<td>35 (4.9–289)</td>
<td><0.001</td>
</tr>
<tr>
<td>Corticosteroids</td>
<td>20 (2.9–217)</td>
<td><0.005</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>4.4 (0.9–21)</td>
<td><0.05</td>
</tr>
<tr>
<td>Transfusion in last 14 days</td>
<td>15 (1.5–708)</td>
<td><0.01</td>
</tr>
<tr>
<td>Hypertension</td>
<td>7.7 (4.7–13)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Renal disease</td>
<td>7.2 (3.4–14)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>9.1 (2.8–23)</td>
<td><0.0005</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>4.3 (0.9–13)</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Stroke Prevention

- Ischemic stroke in children
 - Screen with transcranial Doppler US to identify high risk group (10%/year)
 - Transfusions every 4 weeks
 - Reduces risk of stroke to 1%/year
 - Duration of transfusion-30 months inadequate
- No data in adults
- Hemorrhagic stroke-? Careful transfusion

Adams et al. NEJM 1998;339:5-11
Adams et al. NEJM 2005;353:2769-78
Time Averaged Maximal Velocities of >200 cm/sec in the distal internal carotid or middle cerebral arteries
Adult Survival by Type of Stroke

- Ischemic Stroke
- Primary Hemorrhagic Stroke

$p=0.05$ Log-Rank Test
Acute Treatment of Stroke

• Hemorrhagic and ischemic
 • Complete evaluation for typical causes
 • Consult neurology or stroke service
 • Exchange transfusion to reduce HbS <30%
 • Established therapies in the general population
• SAH- embolization or clipping if aneurysm
• Ischemic-Consider TPA if meets guidelines, ASA

Secondary Prevention of Stroke

- Hemorrhagic
 - Treatment of modifiable risk factors
 - Role of transfusions or hydroxyurea unclear

- Ischemic
 - Regular transfusions to maintain HbS <30-50%
 - Decreased stroke: 67% at 4 years to 2.1/100 person-years
 - 45% had progressive cerebral infaracts after 5.5 years
 - Treatment of modifiable risk factors
 - Alternatives- hydroxyurea, HSCT, revascularization

Hulbert et al. Blood 2011;117(3):772-77
Silent Cerebral Infarct

- Frequent complication of SCD
 - Ischemic changes on MRI without history or physical exam consistent with stroke
 - From 16 – 30% of children with HbSS
- Associated with increased risk of
 - Cognitive impairment
 - School failure
 - Overt Stroke

Schatz et. al. Neurology 56:1109-11.
Silent Cerebral Infarct

<table>
<thead>
<tr>
<th>Complication</th>
<th>Peds</th>
<th>Adult</th>
<th>Morbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemorrhagic CVA</td>
<td>0.21</td>
<td>0.30</td>
<td>26% death</td>
</tr>
<tr>
<td>Ischemic CVA</td>
<td>0.51</td>
<td>0.19</td>
<td>0% death</td>
</tr>
<tr>
<td>Silent Infarct-1st</td>
<td>1.01</td>
<td>14%</td>
<td>Lower IQ</td>
</tr>
<tr>
<td>2nd/Progressive Prevalence</td>
<td>7.06</td>
<td>ND</td>
<td>School failure 58%</td>
</tr>
<tr>
<td>Cog deficits (controls)</td>
<td>11%</td>
<td>15%</td>
<td>Visual-motor</td>
</tr>
<tr>
<td>HbSS nl MRI</td>
<td>27%</td>
<td>33%</td>
<td>& spatial</td>
</tr>
<tr>
<td>HbSS SCI</td>
<td>79%</td>
<td>ND</td>
<td>Attention/EF</td>
</tr>
</tbody>
</table>

Cognitive Deficits in Adult

- Not very well characterized
- Rigorous study of people with HbSS
 - Excluded those with known stroke
 - Slow processing speed 87(HbSS) 99 (controls)
 - Performance IQ 90.6 95.9
 - Age related decline in PIQ in those with Hb <7.6

Vinchinsky et al. JAMA 2010;303:1823-1831
Acute Anemic Episodes

- Hyperhemolysis
 - Occurs frequently with vaso-occlusion
 - Hemoglobin drops 1 to 2 g/dl
- Splenic sequestration
- Decreased production
 - Diagnose by CBC and reticulocyte count
Acute Splenic Sequestration

- HbSS <5 years old
- HbSC, HbSβ⁺ thalassemia >5 years old

Symptoms/Signs
- Irritability
- Weak
- Pale
- Tachycardia
- Lethargy
- LUQ pain
- Splenomegaly

Labs
Acute Splenic Sequestration

- Uncommon in adults

- Treatment
 - Acutely-transfusion with care
 - Chronically-transfusions, splenectomy

- Chronic splenomegaly
 - May cause thrombocytopenia, anemia
 - Splenectomy if symptomatic.
Aplastic Crisis

- Severe anemia
- ↓↓ reticulocytes
 - Fifth disease
 - Parvovirus B19
 - Lasts 10-14 days
 - Very contagious
- Often need blood transfusion
- Can miss in HbSC
Aplastic Crisis

- Parvovirus infection mostly in children
 - 70% seropositive by age 20
- Associated with
 - Stroke
 - Acute chest syndrome
 - Glomerulonephritis
 - Multiorgan failure syndrome

Multiorgan Failure Syndrome

- Lung - new infiltrate with >3 L/min of O₂
- Liver - ALT, total bili >5x, direct bilirubin >2 x nl & baseline, PT >3 sec prolonged
- Kidney - acute injury - creatinine > 2 mg/dl
- Need 2 of 3 organs, at least 2 for liver
- Occurs after acute sickle cell pain
- Seen in all genotypes

Possible Mechanism

SICKLING → MICROVASCULAR OCCLUSION → PAIN

HYPOXEMIA → INCREASING ANEMIA → FAT EMBOLI

INFECTION → DIFFUSE TISSUE ISCHEMIA

DIFFUSE TISSUE ISCHEMIA → ACUTE MULTIORGAN FAILURE → DEATH

TRANSFUSION → ACUTE MULTIORGAN FAILURE
Acute Loss of Vision

- Proliferative sickle retinopathy
 - More common in HbSC (36%) than HbSS (12%)
 - Causes vitreous hemorrhage and retinal detachment
- Retinal artery occlusion
 - Often in young patients
- Glaucoma
 - After traumatic hyphema in SCD and trait
 - Caused by occlusion of trabecular network
Multiple occluded arterioles surrounding the foveal avascular zone and inferior/inferonasal to optic nerve.
Take Home Points

• Treat pain at home and after evaluation
• Prevent and treat of infection in primary care and acute settings
• Recognize and treat severe acute complications of SCD with transfusion