Research Lab Results for tissues
-
Kunisaki Lab
The Kunisaki lab is a R01-funded regenerative medicine group within the Division of General ...Pediatric Surgery at Johns Hopkins that works at the interface of stem cells, mechanobiology, and materials science. We seek to understand how biomaterials and mechanical forces affect developing tissues relevant to pediatric surgical disorders. To accomplish these aims, we take a developmental biology approach using induced pluripotent stem cells and other progenitor cell populations to understand the cellular and molecular mechanisms by which fetal organs develop in disease.
Our lab projects can be broadly divided into three major areas: 1) fetal spinal cord regeneration 2) fetal lung development 3) esophageal regeneration
Lab members: Juan Biancotti, PhD (lab manager); Lynn Zhou, PhD (postdoc), Shelby Sferra, MD, MPH (postdoc); Annalise Penikis, MD (postdoc)
Recent publications:
Kunisaki SM, Jiang G, Biancotti JC, Ho KKY, Dye BR, Liu AP, Spence JR. Human induced pluripotent stem cell-derived lung organoids in an ex vivo model of congenital diaphragmatic hernia fetal lung. Stem Cells Translational Medicine 2021, PMID: 32949227
Biancotti JC, Walker KA, Jiang G, Di Bernardo J, Shea LD, Kunisaki SM. Hydrogel and neural progenitor cell delivery supports organotypic fetal spinal cord development in an ex vivo model of prenatal spina bifida repair. Journal of Tissue Engineering 2020, PMID: 32782773.
Kunisaki SM. Amniotic fluid stem cells for the treatment of surgical disorders in the fetus and neonate. Stem Cells Translational Medicine 2018, 7:767-773
view more Research Areas: fetal therapy, stem cells, pediatric surgery, tissue engineering, congenital diaphragmatic hernia, myelomeningocele -
Mass Spectrometry Core
Lab WebsiteThe Mass Spectrometry Core identifies and quantifies proteins that change expression in well-ch...aracterized protein fractions from cancerous cells or tissues. This includes identifying and quantifying changes in binding partners and post-translational modifications. Column chromatography and gel electrophoresis-based one and two-dimensional separations of protein complexes coupled to mass spectrometry are used. Techniques such as difference gel electrophoresis (DIGE), isobaric tag for relative and absolute quantitation (iTRAQ) and 18O-labeling as well as non-labeling methods (MudPit, multi-dimensional protein identification technology) are available for quantifying relative differences in protein expression and post-translational modifications. We developed methods to detect post-translational modifications such as LCMS methods to accurately determine the intact mass of proteins, selective fluorescent labeling of S-nitrosothiols (S-FLOS) to detect nitrosated cysteines in proteins, and ion mapping methods to map post-translational modifications that produce a signature mass or mass difference when the modified peptide is fragmented. view more
Research Areas: mass spectrometry, proteomics, cancer -
Molecular Mechanisms of Cellular Mechanosensing (Robinson Lab)
Lab WebsiteThe Robinson Lab studies the way in which mechanical stress guide and direct the behavior of ce...lls, including when they are part of tissues, organs and organ systems. view more
Research Areas: cellular mechanosensing, tissues, organs, molecular biology -
Robert Anders Lab
Lab WebsiteDr. Anders’ laboratory focuses on the basic processes that lead to cancer. His team approaches ...these questions through the use of both experimental models and examination of human tissues. His team is specifically interested in interrogating the immune microenvironment of cancer, detecting circulating cancer cells and preventing cancer metastasis. view more
Research Areas: cancer, translational research, immunotherapy, liver cancer -
Seth Blackshaw Lab
Lab WebsiteThe Seth Blackshaw Lab uses functional genomics and proteomics to rapidly identify the molecula...r mechanisms that regulate cell specification and survival in both the retina and hypothalamus. We have profiled gene expression in both these tissues, from the start to the end of neurogenesis, characterizing the cellular expression patterns of more than 1,800 differentially expressed transcripts in both tissues. Working together with the lab of Heng Zhu in the Department of Pharmacology, we have also generated a protein microarray comprised of nearly 20,000 unique full-length human proteins, which we use to identify biochemical targets of developmentally important genes of interest. view more
Research Areas: retina, central nervous system, biochemistry, hypothalamus, proteomics, genomics -
The Arking Lab
The Arking Lab studies the genomics of complex human disease, with the primary goal of identify...ing and characterizing genetics variants that modify risk for human disease. The group has pioneered the use of genome-wide association studies (GWAS), which allow for an unbiased screen of virtually all common genetic variants in the genome. The lab is currently developing improved GWAS methodology, as well as exploring the integration of additional genome level data (RNA expression, DNA methylation, protein expression) to improve the power to identify specific genetic influences of disease.
Research Areas: autism, genetics, aging, cardiovascular diseases, sudden cardiac death
The Arking Lab is actively involved in researching:
• autism, a childhood neuropsychiatric disorder
• cardiovascular genomics, with a focus on electrophysiology and sudden cardiac death (SCD)
• electrophysiology is the study of the flow of ions in biological tissues
Dan E. Arking, PhD, is an associate professor at the McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, Division of Cardiology, Johns Hopkins University. view more -
The Halushka Lab
Lab WebsiteThe Halushka laboratory is interested in the overarching question of expression localization in... tissues. To address this, the laboratory has set out upon several avenues of discovery in the areas of microRNA expression, proteomics and tissue gene expression. Many of these queries relate to the cardiovascular field as Dr. Halushka is a cardiovascular pathologist. Come learn about the science being done in the laboratory.
Research Areas: genomic sciences, cardiovascular, genomic technologies, cardiovascular diseases
view more
- 1
- 2