Research Lab Results for oxygen
-
Espenshade Lab
Lab WebsiteThe Espenshade Lab uses a multi-organismal and multidisciplinary approach to understand how euk...aryotic cells measure insoluble lipids and dissolved gases. We have chosen cholesterol and oxygen as our model molecules, based on their essential roles in cell function and the importance of their proper homeostasis for human health. view more
Research Areas: cell biology, oxygen, eukaryotic cells, cholesterol -
Gregg Semenza Lab
The Gregg Semenza Lab studies the molecular mechanisms of oxygen homeostasis. We have cloned an...d characterized hypoxia-inducible factor 1 (HIF-1), a basic helix-loop-helix transcription factor.
Research Areas: cancer, oxygen, lung disease, genomics, HIF-1, pathogenesis, myocardial ischemia
Current research investigates the role of HIF-1 in the pathophysiology of cancer, cerebral and myocardial ischemia, and chronic lung disease, which are the most common causes of mortality in the U.S. view more -
John Ulatowski Lab
Lab WebsiteResearch in the John Ulatowski Lab explores the regulatory mechanisms of oxygen delivery to the... brain and cerebral blood flow. Our work includes developing and applying new techniques and therapies for stroke as well as non-invasive techniques for monitoring brain function, fluid management and sedation in brain injury patients. We also examine the use of novel oxygen carriers in blood. We’ve recently begun exploring new methods for perioperative and periprocedural care that would help to optimize patient safety in the future. view more
Research Areas: cerebrovascular, brain, stroke, oxygen, blood -
Jun Hua Lab
Lab WebsiteDr. Hua's research has centered on the development of novel MRI technologies for in vivo functi...onal and physiological imaging in the brain, and the application of such methods for studies in healthy and diseased brains. These include the development of human and animal MRI methods to measure functional brain activities, cerebral perfusion and oxygen metabolism at high (3 Tesla) and ultra-high (7 Tesla and above) magnetic fields. He is particularly interested in novel MRI approaches to image small blood and lymphatic vessels in the brain. Collaborating with clinical investigators, these techniques have been applied 1) to detect functional, vascular and metabolic abnormalities in the brain in neurodegenerative diseases such as Huntingdon's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD) and mental disorders such as schizophrenia; and 2) to map brain functions and cerebrovascular reactivity for presurgical planning in patients with vascular malformations, brain tumors and epilepsy. view more
Research Areas: imaging technology development, applications in brain diseases -
Machine Biointerface Lab
Lab WebsiteDr. Fridman's research group invents and develops bioelectronics for Neuroengineering and Medic...al Instrumentation applications. We develop innovative medical technology and we also conduct the necessary biological studies to understand how the technology could be effective and safe for people.
Research Areas: medical instruments, bioelectricities, neuroengineering, nerve stimulation
Our lab is currently focused on developing the "Safe Direct Current Stimulation" technology, or SDCS. Unlike the currently available commercial neural prosthetic devices, such as cochlear implants, pacemakers, or Parkinson's deep brain stimulators that can only excite neurons, SDCS can excite, inhibit, and even sensitize them to input. This new technology opens a door to a wide range of applications that we are currently exploring along with device development: e.g. peripheral nerve stimulation for suppressing neuropathic pain, vestibular nerve stimulation to correct balance disorders, vagal nerve stimulation to suppress an asthma attack, and a host of other neuroprosthetic applications.
Medical Instrumentation MouthLab is a "tricorder" device that we invented here in the Machine Biointerface Lab. The device currently obtains all vital signs within 60s: Pulse rate, breathing rate, temperature, blood pressure, blood oxygen saturation, electrocardiogram, and FEV1 (lung function) measurement. Because the device is in the mouth, it has access to saliva and to breath and we are focused now on expanding its capability to obtaining measures of dehydration and biomarkers that could be indicative of a wide range of internal disorders ranging from stress to kidney failure and even lung cancer.
view more -
Mark Liu Lab
Research in the Mark Liu Lab explores several areas of pulmonary and respiratory medicine. Our ...studies primarily deal with allergic inflammation, chronic obstructive pulmonary disease (COPD) and asthma, specifically immunologic responses to asthma. We have worked to develop a microfluidic device with integrated ratiometric oxygen sensors to enable long-term control and monitoring of both chronic and cyclical hypoxia. In addition, we conduct research on topics such as the use of magnetic resonance angiography in evaluating intracranial vascular lesions and tumors as well as treatment of osteoporosis by deep sea water through bone regeneration. view more
Research Areas: respiratory system, pulmonary medicine, asthma, COPD, inflammation, hypoxia -
Roy Brower Lab
The Roy Brower Lab conducts clinical trials related to the management of acute respiratory dist...ress syndrome (ARDS). Our research also involves oxygen toxicity, a potentially fatal condition caused by too much supplemental oxygen. view more
Research Areas: acute respiratory distress syndrome, oxygen toxicity, acute lung injury
- 1