Research Lab Results for electron microscopy
-
Advanced Optics Lab
Lab WebsiteThe Advanced Optics Lab uses innovative optical tools, including laser-based nanotechnologies, ...to understand cell motility and the regulation of cell shape. We pioneered laser-based nanotechnologies, including optical tweezers, nanotracking, and laser-tracking microrheology. Applications range from physics, pharmaceutical delivery by phagocytosis (cell and tissue engineering), bacterial pathogens important in human disease and cell division.
Research Areas: optics, microscopy, physics, cellular biology, imaging, nanotechnology, drugs, tissue engineering
Other projects in the lab are related to microscopy, specifically combining fluorescence and electron microscopy to view images of the subcellular structure around proteins. view more -
Fuchs Laboratory
Lab WebsiteThe Fuchs Laboratory uses cellular electrophysiology, immunolabeling and electron microscopy to... study synaptic connections between sensory hair cells and neurons in the cochlea. One effort focuses on an unusual cholinergic receptor that mediates efferent inhibition of hair cells, driving discovery of the molecular mechanisms, and offering a target for protection against acoustic trauma. A second topic concerns the small number of unmyelinated "type II" afferent neurons whose synaptic connectivity and response properties argue for a role as the pathway for noxious (too loud) sound. Our studies are motivated by curiosity about fundamental mechanisms, and to provide a foundation for understanding cochlear pathogenesis. view more
Research Areas: synaptic connections, immunolabeling, neurons, elecrophysiology, audiology, cellular electrophysiology, hearing loss, electron microscopy, cochlea, cochlear pathogensesis -
Jean Kim Lab
The Jean Kim Laboratory performs translational research in the
Research Areas: nasal polyps, chronic rhinosinusitis, hyperplastic nasal polyposis
area of chronic rhinosinusitis,... with a niche interest in the pathogenesis of hyperplastic nasal
polyposis. Studies encompass clinical research to basic wet laboratory research in
studying the underlying immune and autoimmune mediated mechanism of polyp growth and
perpetuation of disease. Human cell and tissue culture models are used. Techniques in the
laboratory include cell and tissue culture, real time PCR, immunoblot, ELISA, flow cytometry,
immunohistochemistry, electron microscopy, gene array analysis, and other molecular
approaches including genetic knockdowns. Approaches used in Dr. Kim’s clinical study
designs include prospective and retrospective analysis of patient outcomes and clinical
biomarkers, as wells controlled clinical trials.
view more -
Lee Martin Laboratory
Lab WebsiteIn the Lee Martin Laboratory, we are testing the hypothesis that selective vulnerability--the p...henomenon in which only certain groups of neurons degenerate in adult onset neurological disorders like amyotrophic lateral sclerosis and Alzheimer's disease--is dictated by brain regional connectivity, mitochondrial function and oxidative stress. We believe it is mediated by excitotoxic cell death resulting from abnormalities in excitatory glutamatergic signal transduction pathways, including glutamate transporters and glutamate receptors as well as their downstream intracellular signaling molecules.
Research Areas: ALS, neurodegeneration, selective vulnerability, cell death, Alzheimer's disease
We are also investigating the contribution of neuronal/glial apoptosis and necrosis as cell death pathways in animal (including transgenic mice) models of acute and progressive neurodegeneration. We use a variety of anatomical and molecular neurobiological approaches, including neuronal tract-tracing techniques, immunocytochemistry, immunoblotting, antipeptide antibody production, transmission electron microscopy and DNA analysis to determine the precise regional and cellular vulnerabilities and the synaptic and molecular mechanisms that result in selective neuronal degeneration.
view more
- 1