Research Lab Results for brain
-
David Linden Lab
The David Linden Laboratory has used both electrode and optical recording in cerebellar slice a...nd culture model systems to explore the molecular requirements for induction and expression of these phenomena. Along the way, we discovered a new form of plasticity. In addition, we have expanded our analysis to include use-dependent synaptic and non-synaptic plasticity in the cerebellar output structure, the deep nuclei.
Research Areas: motor learning, synaptic plasticity, neurobiology, memory, cerebellum, brain
Our investigations are central to understanding the cellular substrates of information storage in a brain area where the behavioral relevance of the inputs and outputs is unusually well defined. In addition, our investigations have potential clinical relevance for cerebellar motor disorders and for disorders of learning and memory generally.
view more -
Esther Oh Lab
The Esther Oh Lab is interested in developing biological markers for pre-clinical stages of Alz...heimer's disease (AD). Our current research involves using transgenic models of AD to develop peripheral injections of monoclonal antibodies against amyloid-beta as a tool to detect a level of amyloid-beta that would be correlative to the amyloid-beta level in the brain. view more
Research Areas: amyloid-beta, dementia, Alzheimer's disease, monoclonal antibodies -
Faria Lab
Andreia Faria's Laboratory focuses on investigating brain functions using MRIs. We develop and ...apply methods for processing and analyzing diverse MRI modalities in order to characterize distinctive brain patterns and to study multiple conditions, including neurodegenerative diseases, psychiatric disorders, and stroke. We use artificial intelligence to develop tools for brain MRI segmentation and quantification, promoting the means to perform reliable and reproducible translational research. view more
Research Areas: radiology, MRI, neuroscience -
Functional Neurosurgery Laboratory
Lab WebsiteThe research goals of the Functional Neurosurgery Laboratory include the development of computa...tional models to understand how brain function is affected by neurological conditions and how this abnormal function might be corrected or minimized by neuromodulation through electrical stimulation. The lab uses data collected from patients during epilepsy monitoring or in the operating room during DBS procedures to construct and calibrate the computational models. The models can be manipulated to explore functional changes and treatment possibilities. The other primary goal of the laboratory is the development of a neuromodulation system that applies stimulation pulses at specific phases of brain oscillatory activity. This technique is being explored in the context of Parkinson's disease as well as memory function, and may lead to less invasive therapeutic treatment system with more effective stimulation. view more
Research Areas: epilepsy, movement disorders, Parkinson's disease, computational modeling, Functional neurosurgery -
Haughey Lab: Neurodegenerative and Neuroinfectious Disease
Lab WebsiteDr. Haughey directs a disease-oriented research program that address questions in basic neurobi...ology, and clinical neurology. The primary research interests of the laboratory are:
Research Areas: multiple sclerosis, PTSD, HAND, HIV
1. To identify biomarkers markers for neurodegenerative diseases including HIV-Associated Neurocognitive Disorders, Multiple Sclerosis, and Alzheimer’s disease. In these studies, blood and cerebral spinal fluid samples obtained from ongoing clinical studies are analyzed for metabolic profiles through a variety of biochemical, mass spectrometry and bioinformatic techniques. These biomarkers can then be used in the diagnosis of disease, as prognostic indicators to predict disease trajectory, or as surrogate markers to track the effectiveness of disease modifying interventions.
2. To better understand how the lipid components of neuronal, and glial membranes interact with proteins to regulate signal transduction associated with differentiation, motility, inflammatory signaling, survival, and neuronal excitability.
3. To understand how extracellular vesicles (exosomes) released from brain resident cells regulate neuronal excitability, neural network activity, and peripheral immune responses to central nervous system damage and infections.
4. To develop small molecule therapeutics that regulate lipid metabolism as a neuroprotective and restorative strategy for neurodegenerative conditions. view more -
Healthy Brain Program
Lab WebsitePrincipal Investigator:
Leah Rubin, Ph.D., M.A., M.P.H.
Neurology
Psychiatry and Behavioral SciencesThe Brain Health Program is a multidisciplinary team of faculty from the departments of neurolo...gy, psychiatry, epidemiology, and radiology lead by Leah Rubin and Jennifer Coughlin. In the hope of revealing new directions for therapies, the group studies molecular biomarkers identified from tissue and brain imaging that are associated with memory problems related to HIV infection, aging, dementia, mental illness and traumatic brain injury. The team seeks to advance policies and practices to optimize brain health in vulnerable populations while destigmatizing these brain disorders.
Research Areas: HIV infection, mental illness, aging, traumatic brain injury, dementia
Current and future projects include research on: the roles of the stress response, glucocorticoids, and inflammation in conditions that affect memory and the related factors that make people protected or or vulnerable to memory decline; new mobile apps that use iPads to improve our detection of memory deficits; clinical trials looking at short-term effects of low dose hydrocortisone and randomized to 28 days of treatment; imaging brain injury and repair in NFL players to guide players and the game; and the role of inflammation in memory deterioration in healthy aging, patients with HIV, and other neurodegenerative conditions. view more -
Human Brain Physiology and Stimulation Lab
Lab WebsiteThe Human Brain Physiology and Stimulation Laboratory studies the mechanisms of motor learning ...and develops interventions to modulate motor function in humans. The goal is to understand how the central nervous system controls and learns to perform motor actions in healthy individuals and in patients with neurological diseases such as stroke. Using this knowledge, we aim to develop strategies to enhance motor function in neurological patients.
Research Areas: motor learning, TMS, brain stimulation, neurologic rehabilitation, tDCS, stroke rehabilitation, stroke recovery
To accomplish these interests, we use different forms of non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), as well as functional MRI and behavioral tasks.
view more -
James Knierim Laboratory
Research in the James Knierim Laboratory attempts to understand the flow of information through... the hippocampal formation and the computations performed by the various subfields of the hippocampus and its inputs from the entorhinal cortex. To address these issues, we use multi-electrode arrays to record the extracellular action potentials from scores of well-isolated hippocampal neurons in freely moving rats.
Research Areas: cognition, place cells, memory, neurophysiology, hippocampus
These neurons, or "place cells," are selectively active when the rat occupies restricted locations in its environment and help to form a cognitive map of the environment. The animal uses this map to navigate efficiently in its environment and to learn and remember important locations. These cells are thought to play a major role in the formation of episodic (autobiographical) memories. Place cells thus constitute a tremendous opportunity to investigate the mechanisms by which the brain transforms sensory input into an internal, cognitive representation of the world and then uses this representation as the framework that organizes and stores memories of past events. view more -
James Pekar Lab
Lab WebsiteHow do we see, hear, and think? More specifically, how can we study living people to understand... how the brain sees, hears, and thinks? Recently, magnetic resonance imaging (MRI), a powerful anatomical imaging technique widely used for clinical diagnosis, was further developed into a tool for probing brain function. By sensitizing magnetic resonance images to the changes in blood oxygenation that occur when regions of the brain are highly active, we can make "movies" that reveal the brain at work. Dr. Pekar works on the development and application of this MRI technology.
Research Areas: magnetic resonance, functional magnetic resonance imaging, radiology
Dr. Pekar is a biophysicist who uses a variety of magnetic resonance techniques to study brain physiology and function. Dr. Pekar serves as Manager of the F.M. Kirby Research Center for Functional Brain Imaging, a research resource where imaging scientists and neuroscientists collaborate to study brain function using unique state-of-the-art techniques in a safe comfortable environment, to further develop such techniques, and to provide training and education. Dr. Pekar works with center staff to serve the center's users and to keep the center on the leading edge of technology.
view more