Skip Navigation

Find a Research Lab

Research Lab Results for brain injury

Displaying 1 to 10 of 11 results
Results per page:
  • Adam Sapirstein Lab

    Lab Website

    Researchers in the Adam Sapirstein Lab focus on the roles played by phospholipases A2 and their... lipid metabolites in brain injury. Using in vivo and in vitro models of stroke and excitotoxicity, the team is examining the roles of the cytosolic, Group V, and Group X PLA2s as well as the function of PLA2s in cerebrovascular regulation. Investigators have discovered that cPLA2 is necessary for the early electrophysiologic changes that happen in hippocampal CA1 neurons after exposure to N-methyl-d-aspartate (NMDA). This finding has critical ramifications in terms of the possible uses of selective cPLA2 inhibitors after acute neurologic injuries. view more

    Research Areas: phospholipases A2, brain, stroke, lipid metabolites, excitotoxicity, brain injury, neurological disorders
  • Aliaksei Pustavoitau Lab

    The Aliaksei Pustavoitau Lab conducts research on models and mechanisms of impaired consciousne...ss in patients who have suffered acute brain injury. Examples of our work include a study on the mechanisms of neurologic failure in critical illness and another on the use of intensivist-driven ultrasound at the PICU bedside. We also have a longstanding interest in patient safety and quality of care in the ICU setting. view more

    Research Areas: patient safety, brain, consciousness, ICU, brain injury
  • Auditory Brainstem Laboratory

    Lab Website

    The overall goal of the Auditory Brainstem Library is to understand how abnormal auditory input... from the ear affects the brainstem, and how the brain in turn affects activity in the ear through efferent feedback loops. Our emphasis is on understanding the effects of different forms of acquired hearing loss (genetic, conductive, noise-induced, age-related, traumatic brain injury-related) and environmental noise. We are particularly interested in plastic changes in the brain that compensate for some aspects of altered auditory input, and how those changes relate to central auditory processing deficits, tinnitus, and hyperacusis. Understanding these changes will help refine therapeutic strategies and identify new targets for treatment. We collaborate with other labs in the Depts. of Otolaryngology, Neuroscience, Neuropathology, the Wilmer Eye Institute, and the Applied Physics Laboratory at Johns Hopkins, in addition to labs outside the university to increase the impact and clinical relevance of our research. view more

    Research Areas: hearing disorders, compound action potentials, auditory brainstem response, otoacoustic emissions, operation conditions, audiology, acoustic startle modification, hearing, neurology
  • Brain Health Program

    Lab Website

    The Brain Health Program is a multidisciplinary team of faculty from the departments of neurolo...gy, psychiatry, epidemiology, and radiology lead by Leah Rubin and Jennifer Coughlin. In the hope of revealing new directions for therapies, the group studies molecular biomarkers identified from tissue and brain imaging that are associated with memory problems related to HIV infection, aging, dementia, mental illness and traumatic brain injury. The team seeks to advance policies and practices to optimize brain health in vulnerable populations while destigmatizing these brain disorders.

    Current and future projects include research on: the roles of the stress response, glucocorticoids, and inflammation in conditions that affect memory and the related factors that make people protected or or vulnerable to memory decline; new mobile apps that use iPads to improve our detection of memory deficits; clinical trials looking at short-term effects of low dose hydrocortisone and randomized to 28 days of treatment; imaging brain injury and repair in NFL players to guide players and the game; and the role of inflammation in memory deterioration in healthy aging, patients with HIV, and other neurodegenerative conditions.
    view more

    Research Areas: HIV infection, mental illness, aging, traumatic brain injury, dementia
  • Courtney Robertson Lab

    Lab Website

    Work in the Courtney Robertson Lab is focused on identifying interventions that could minimize ...the neurological deficits that can persist after pediatric traumatic brain injury (TBI). One study used a preclinical model to examine potential disruption of mitochondrial function and alterations in cerebral metabolism. It was found that a substantial amount of mitochondrial dysfunction is present in the first six hours after TBI. In addition, we are using nuclear magnetic resonance spectroscopy to evaluate global and regional alterations in brain metabolism after TBI. We're also collaborating with researchers at the University of Pennsylvania to compare mitochondrial function after head injury in different clinically relevant models. view more

    Research Areas: traumatic brain injuries, magnetic resonance spectroscopy, pediatrics, mitochondria, pediatric critical care medicine
  • Jantzie Lab

    Principal Investigator:
    Lauren Jantzie, Ph.D.
    Pediatrics

    Dr. Jantzie, associate professor, received her Ph.D. in Neurochemistry from the University of A...lberta in 2008. In 2013 she completed her postdoctoral fellowship in the Department of Neurology at Boston Children's Hospital & Harvard Medical School and became faculty at the University of New Mexico. Dr. Jantzie then joined the faculty Departments of Pediatrics (Neonatal-Perinatal Medicine) and Neurology at Johns Hopkins University and the Kennedy Krieger Institute in January 2019. Her lab investigates the pathophysiology of encephalopathy of prematurity, and pediatric brain injury common to infants and toddlers. Dr. Jantzie is dedicated to understanding disease processes in the developing brain as a means to identifying new therapeutic strategies and treatment targets for perinatal brain injury. Her lab studies neural substrates of cognition and executive function, inhibitory circuit formation, the role of an abnormal intrauterine environment on brain development, mechanisms of neurorepair and microglial activation and polarization. Using a diverse array of clinically relevant techniques such as MRI, cognitive assessment, and biomarker discovery, combined with traditional molecular and cellular biology, the Jantzie lab is on the front lines of translational pediatric neuroscience.? view more

    Research Areas: Neonatology, neuroscience
  • John Ulatowski Lab

    Lab Website

    Research in the John Ulatowski Lab explores the regulatory mechanisms of oxygen delivery to the... brain and cerebral blood flow. Our work includes developing and applying new techniques and therapies for stroke as well as non-invasive techniques for monitoring brain function, fluid management and sedation in brain injury patients. We also examine the use of novel oxygen carriers in blood. We’ve recently begun exploring new methods for perioperative and periprocedural care that would help to optimize patient safety in the future. view more

    Research Areas: cerebrovascular, brain, stroke, oxygen, blood
  • Pediatric Cerebral Palsy and Epilepsy Lab

    Lab Website
    Principal Investigator:
    Dody Robinson, M.D.
    Neurology
    Neurosurgery

    The team headed by Shenandoah “Dody” Robinson, M.D., professor of neurosurgery, neurology and p...ediatrics, studies perinatal brain injury and repair. Employing developmentally age-appropriate models, the lab investigates neurological consequences of extremely preterm birth, including cerebral palsy, chronic pain, cognitive and behavioral impairment, epilepsy and posthemorrhagic hydrocephalus of prematurity. view more

    Research Areas: pediatric neurology, pediatric epilepsy, cerebral palsy
  • Raul Chavez-Valdez Lab

    Lab Website
    Principal Investigator:
    Raul Chavez Valdez, M.D.
    Pediatrics

    Dr. Raul Chavez-Valdez is an assistant professor in the Department of Pediatrics with great int...erest in the mechanisms of delayed injury and repair/regeneration in the developing neonatal brain following injury, specifically following hypoxic-ischemic encephalopathy (birth asphyxia). He collaborates with Dr. Frances Northington (Pediatrics) and Dr. Lee Martin (Pathology/Neuroscience) in unveiling the importance of programmed necrosis in the setting of brain injury induced by birth asphyxia. He is especially interested in the role of brain derived neurotrophic factor and neurotrophin-4 following birth asphyxia and the changes that may explain the suspected excitatory/ inhibitory (E/I) imbalance particularly in the hippocampus. His work is highly translational since delayed hippocampal injury due to E/I imbalance may explain memory deficits observed despite therapeutic hypothermia in neonates suffering birth asphyxia. All of these aspects of developmental neuroplasticity are the base of his Career Development Award (NIH/NINDS-K08 award) and applications to other agencies. Additionally, he is part of multiple clinical efforts as part of the Neuroscience Intensive Care Nursery (NICN). He has been a Sutland-Pakula Endowed Fellow of Neonatal Research since September 2013. view more

    Research Areas: critical care medicine, neonatal, neuroscience, pediatrics, intensive care, pediatric critical care medicine
  • Sujatha Kannan Lab

    Lab Website

    The Sujatha Kannan Lab works to develop therapeutic strategies for preventing perinatal brain i...njuries from occurring during development. We use a unique combination of nanotechnology, animal model development and in vivo imaging to better understand the mechanism and progression of cellular and metabolic conditions that lead to perinatal brain injury, with a focus on autism and cerebral palsy. view more

    Research Areas: autism, imaging, nanotechnology, cerebral palsy, perinatal brain injuries
  1. 1
  2. 2
Create lab profile
Edit lab profile
back to top button