Skip Navigation

Find a Research Lab

Research Lab Results for balance

Displaying 1 to 12 of 12 results
Results per page:
  • Carey Research Group

    John Carey’s Research Group conducts research regarding diseases of the inner ear that affect b...oth balance and hearing mechanisms. Key interests include superior semicircular canal dehiscence syndrome (SCDS), the normal vestibular reflexes and how they change with age, novel intratympanic treatments (i.e., middle ear injections) for conditions like Menière’s disease and sudden hearing loss, and the mechanisms of vestibular migraine. With Lloyd Minor, Dr. Carey helped develop the operation to repair the superior canal in patients with SCDS using image-guided surgery. Dr. Carey has been funded by the National Institutes of Health – National Institute on Deafness and Other Communication Disorders to study inner ear balance function in Menière’s disease and steroid treatment of sudden hearing loss. view more

    Research Areas: meniere's disease, vertigo, audiology, neurotology/otology, superior canal dehiscence, cochlear implant, hearing loss
  • Elisseeff Lab

    Lab Website
    Principal Investigator:
    Jennifer Elisseeff, Ph.D.
    Ophthalmology

    The mission of the Elisseeff Lab is to engineer technologies to repair lost tissues. We aim to ...bridge academic research and technology discovery to treat patients and address clinically relevant challenges related to tissue engineering. To accomplish this goal we are developing and enabling materials, studying biomaterial structure-function relationships and investigating mechanisms of tissue development to practically rebuild tissues. The general approach of tissue engineering is to place cells on a biomaterial scaffold that is designed to provide the appropriate signals to promote tissue development and ultimately restore normal tissue function in vivo. Understanding mechanisms of cellular interactions (both cell-cell and cell-material) and tissue development on scaffolds is critical to advancement of the field, particularly in applications employing stem cells. Translation of technologies to tissue-specific sites and diseased environments is key to better design, understanding, and ultimately efficacy of tissue repair strategies. We desire to translate clinically practical strategies, in the form of biomaterials/medical devices, to guide and enhance the body's natural capacity for repair. To accomplish the interdisciplinary challenge of regenerative medicine research, we maintain a synergistic balance of basic and applied/translational research. view more

    Research Areas: stem cells, biomedical engineering, tissues
  • John Carey Lab

    The John Carey Lab studies inner ear balance function in Menière’s disease and steroid treatmen...t of sudden hearing loss. Other research of interest includes the normal vestibular reflexes and how they change with age, the ototoxic effects of gentamicin, the use of intratympanic steroids for Menière’s disease, the diagnostic utility of vestibular evoked myogenic potential testing, and the mechanisms of vestibular migraine. view more

    Research Areas: vestibular migraine, otolaryngology, intratympanic steroids, meniere's disease, balance, hearing loss
  • Laboratory of Airway Immunity

    We are interested in understanding how innate immune responses regulate lung health. Innate imm...unity involves ancient, and well-conserved mediators and their actions regulate the balance between homeostasis and pathogenesis. In the lungs, innate immunity play a critical role in response to environmental exposures such as allergen and ambient particulate matter. My lab focuses on how these exposures can promote aberrant mucosal responses that can drive the development of diseases like asthma. view more

    Research Areas: allergy, type 2 immunity, asthma, particulate matter, allergens, innate immunity
  • Machine Biointerface Lab

    Lab Website

    Dr. Fridman's research group invents and develops bioelectronics for Neuroengineering and Medic...al Instrumentation applications. We develop innovative medical technology and we also conduct the necessary biological studies to understand how the technology could be effective and safe for people.

    Our lab is currently focused on developing the "Safe Direct Current Stimulation" technology, or SDCS. Unlike the currently available commercial neural prosthetic devices, such as cochlear implants, pacemakers, or Parkinson's deep brain stimulators that can only excite neurons, SDCS can excite, inhibit, and even sensitize them to input. This new technology opens a door to a wide range of applications that we are currently exploring along with device development: e.g. peripheral nerve stimulation for suppressing neuropathic pain, vestibular nerve stimulation to correct balance disorders, vagal nerve stimulation to suppress an asthma attack, and a host of other neuroprosthetic applications.

    Medical Instrumentation MouthLab is a "tricorder" device that we invented here in the Machine Biointerface Lab. The device currently obtains all vital signs within 60s: Pulse rate, breathing rate, temperature, blood pressure, blood oxygen saturation, electrocardiogram, and FEV1 (lung function) measurement. Because the device is in the mouth, it has access to saliva and to breath and we are focused now on expanding its capability to obtaining measures of dehydration and biomarkers that could be indicative of a wide range of internal disorders ranging from stress to kidney failure and even lung cancer.
    view more

    Research Areas: medical instruments, bioelectricities, neuroengineering, nerve stimulation
  • Motion Analysis Laboratory

    Lab Website

    Our team is focused on understanding how complex movements are normally learned and controlled,... and how damage to specific brain areas impairs these processes. We employ several techniques to quantify movement including: 3-dimensional tracking and reconstruction of movement, recordings of muscle activity, force plate recordings, and calculation of joint forces and torques. These techniques allow for very precise measurements of many different types of movements including: walking, reaching, leg movements, hand movements and standing balance. All studies are designed to test specific hypotheses about the function of different brain areas, the cause of specific impairments and/or the effects of different interventions. view more

    Research Areas: cerebellar function, neurological diseases, motor learning
  • Neuro-Vestibular and Ocular Motor Laboratory

    Principal Investigator:
    Amir Kheradmand, M.D.
    Neurology

    In our laboratory we study the brain mechanisms of eye movements and spatial orientation.

    -H...ow magnetic stimulation through transcranial devices affects cortical brain regions
    -Neural mechanisms underlying balance, spatial orientation and eye movement
    -Mathematical models that describe the function of ocular motor systems and perception of spatial orientation
    -Short- and long-term adaptive processes underlying compensation for disease and functional recovery in patients with ocular motor, vestibular and perceptual dysfunction
    Developing and testing novel diagnostic tools, treatments, and rehabilitative strategies for patients with ocular motor, vestibular and spatial dysfunction
    view more

    Research Areas: perception of spatial orientation, ocular motor physiology
  • The Hackam Lab for Pediatric Surgical, Translational and Regenerative Medicine

    Lab Website
    Principal Investigator:
    David Hackam, M.D., Ph.D.
    Pediatrics
    Surgery

    David Hackam’s laboratory focuses on necrotizing enterocolitis (NEC), a devastating disease of ...premature infants and the leading cause of death and disability from gastrointestinal disease in newborns.

    The disease strikes acutely and without warning, causing sudden death of the small and large intestines. In severe cases, tiny patients with the disease are either dying or dead from overwhelming sepsis within 24 hours. Surgical treatment to remove most of the affected gut results in lifelong short gut (short bowel) syndrome.

    The Hackam Lab has identified a critical role for the innate immune receptor toll-like receptor 4 (TLR4) in the pathogenesis of necrotizing enterocolitis. The lab has shown that TLR4 regulates the development of the disease by tipping the balance between injury and repair in the stressed intestine of the premature infant. Developing an Artificial Intestine A key goal is to create, in the laboratory, new intestines made from patients’ own cells, which can then be implanted into the patient to restore normal digestive function. This innovative design could transform child development and quality of life in necrotizing enterocolitis survivors without the risks of conventional donor transplant.
    view more

    Research Areas: necrotizing enterocolitis, gut inflammation, stem cell biology, premature infants, TLR4
  • Vestibular NeuroEngineering Lab

    Lab Website

    Research in the Vestibular NeuroEngineering Lab (VNEL) focuses on restoring inner ear function ...through “bionic” electrical stimulation, inner ear gene therapy, and enhancing the central nervous system’s ability to learn ways to use sensory input from a damaged inner ear. VNEL research involves basic and applied neurophysiology, biomedical engineering, clinical investigation and population-based epidemiologic studies. We employ techniques including single-unit electrophysiologic recording; histologic examination; 3-D video-oculography and magnetic scleral search coil measurements of eye movements; microCT; micro MRI; and finite element analysis. Our research subjects include computer models, circuits, animals and humans. For more information about VNEL, click here.
    VNEL is currently recruiting subjects for two first-in-human clinical trials:
    1) The MVI Multichannel Vestibular Implant Trial involves implantation of a “bionic” inner ear stimulator intended to partially restore sensation of head movement. Without that sensation, the brain’s image- and posture-stabilizing reflexes fail, so affected individuals suffer difficulty with blurry vision, unsteady walking, chronic dizziness, mental fogginess and a high risk of falling. Based on designs developed and tested successfully in animals over the past the past 15 years at VNEL, the system used in this trial is very similar to a cochlear implant (in fact, future versions could include cochlear electrodes for use in patients who also have hearing loss). Instead of a microphone and cochlear electrodes, it uses gyroscopes to sense head movement, and its electrodes are implanted in the vestibular labyrinth. For more information on the MVI trial, click here.
    2) The CGF166 Inner Ear Gene Therapy Trial involves inner ear injection of a genetically engineered DNA sequence intended to restore hearing and balance sensation by creating new sensory cells (called “hair cells”). Performed at VNEL with the support of Novartis and through a collaboration with the University of Kansas and Columbia University, this is the world’s first trial of inner ear gene therapy in human subjects. Individuals with severe or profound hearing loss in both ears are invited to participate. For more information on the CGF166 trial, click here.
    view more

    Research Areas: neuroengineering, audiology, multichannel vestibular prosthesis, balance disorders, balance, vestibular, prosthetics, cochlea, vestibular implant
  • Vestibular Neurophysiology Laboratory

    Lab Website

    The mission of the laboratory of vestibular neurophysiology is to advance the understanding of ...how the body perceives head motion and maintains balance - a complex and vital function of everyday life. Although much is known about the vestibular part of the inner ear, key aspects of how the vestibular receptors perceive, process and report essential information are still mysterious. Increasing our understanding of this process will have tremendous impact on quality of life of patients with vestibular disorders, who often suffer terrible discomfort from dizziness and vertigo.

    The laboratory group's basic science research focuses on the vestibulo-ocular reflexes - the reflexes that move the eyes in response to motions of the head. They do this by studying the vestibular sensors and nerve cells that provide input to the reflexes; by studying eye movements in humans and animals with different vestibular disorders, by studying effects of electrical stimulation of vestibular sensors, and by using mathematical models to describe these reflexes. Researchers are particularly interested in abnormalities of the brain's inability to compensate for vestibular disorders.

    view more

    Research Areas: vestibular disorders, vertigo, balance, dizziness
  • Welling Laboratory

    Lab Website
    Principal Investigator:
    Paul Welling, M.D.
    Medicine

    Dr. Paul A. Welling and his research team explore the genetic and molecular underpinnings of el...ectrolyte physiology, potassium balance disorders, hypertension and kidney disease. A major thrust of current research activity is devoted to understanding how faulty genes and environmental stresses drive hypertension. The research is providing new insights into how the Western diet triggers deleterious responses of salt-sensitivity genes. The Welling laboratory employs a multidisciplinary approach, spanning from gene discovery, molecular biology, genetically engineered mouse models to translational studies in humans. By illuminating pathophysiological mechanisms and translating the discoveries to develop more effective diagnostic and therapeutic strategies, Welling’s group is striving to improve the health of at-risk individuals and patients with kidney disease and hypertension.



    Dr. Welling is the Joseph S. and Esther Hander Professor of Laboratory Research in Nephrology. He has been continuously funded by the National Institutes of Health for over 25 years. Currently he serves as Coordinator of a Global Research Network, funded by the LeDucq Foundation. More about his research can be found at https://www.wellinglab.com/
    view more

    Research Areas: genetic and molecular underpinnings of electrolyte physiology, kidney diseases, hypertension, potassium balance disorders
  1. 1
Create lab profile
Edit lab profile
back to top button