-
About
- Health
-
Patient Care
I Want To...
-
Research
I Want To...
Find Research Faculty
Enter the last name, specialty or keyword for your search below.
-
School of Medicine
I Want to...
Pulmonary and Critical Care Medicine Labs
- 1
-
Alison E. Turnbull Lab
Research in the Alison E. Turnbull Lab focuses on patient-clinician interactions. We study decision-making processes for ICU patients and their families and focus on the long-term outcomes of ICU survivors. Additional research examines ways to improve end-of-life care for patients.
-
Brian Garibaldi Lab
Research in the Brian Garibaldi Lab focuses on acute lung injury (ALI) resolution. Recently, we evaluated the mechanisms underlying mobility therapy and found that therapeutic exercise reduces neutrophilic lung injury and skeletal muscle wasting in ALI mice.
-
Charles Wiener Lab
The Charles Wiener Lab primarily conducts research on pulmonary circulation and hypoxia as well as respiratory muscle function in patients with neuromuscular diseases. Our recent studies have included investigating the treatment of pericardial effusions in patients with pulmonary arterial hypertension and examining the use of non-invasive ventilation in patients with amyotrophic lateral sclerosis (ALS). We also have an interest in medical education research. Our work in this area has included reviewing the role of academic medical centers in emerging health care markets.
-
Christian Merlo Lab
Work in the Christian Merlo Lab includes studies on pulmonary arteriovenous malformations, outcomes in lung transplantation and treatment of cystic fibrosis (CF), and HIV-related pulmonary disease. We have studied methods of diagnosing and managing pulmonary arteriovenous malformations as well as the outcomes of adult CF patients who are infected with multiple antibiotic-resistant Pseudomonas aeruginosa. Our recent research has also explored recipient and donor variables in the success or failure of lung transplants, and ways in which national healthcare delivery systems impact lung transplant outcomes for CF patients.
-
David Feller-Kopman Lab
Research interests in the David Feller-Kopman Lab include improving the multidisciplinary treatment of patients with complex airway disease, investigating the physiology and pathophysiology of non-malignant central airway obstruction and pleural disease, and developing novel methods to teach procedural skills.
-
David Hager Lab
Research in the David Hager Lab focuses on critical care medicine. Recent studies includes an analysis of advances in the management of the acute respiratory distress syndrome (ARDS) and the development of a targeted real-time early warning score predicting septic shock. Other interests include ventilator-induced lung injury and high-frequency ventilation.
-
Edward Chen Lab
Research efforts in the Edward Chen Lab focus on bleomycin-induced pulmonary fibrosis and granulomatous inflammation as well as clinical and translational studies in sarcoidosis. Our studies have included topics such as the etiologies of sarcoidosis, hylleraas hydride binding energy in diatomic electron affinities, and molecular convergence of neurodevelopmental disorders. We have also investigated the use of quantitative mass spectrometric analysis to better understand the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.
-
Elizabeth Daugherty Lab
The Elizabeth Daugherty Lab conducts research on patient safety, critical care infection control and critical care disaster response. We investigate methods of improving patient safety through improved infection control, with a focus on clinical outcomes, nosocomial infection rates and the individual and organizational obstacles to personal protective equipment adherence.
-
Elizabeth Wagner Lab
The Elizabeth Wagner Lab conducts research on several topics within the field of pulmonary medicine. Our key areas of investigation include angiogenesis of the lung and its dependence upon systemic vascularization to regions without pulmonary perfusion as well as the role of bronchial circulation in the uptake of hydrophilic particles that are delivered to the airway surface. In addition, we are conducting several specific studies that examine the relationship between the bronchial vasculature and the influx of inflammatory cells to a patientÕs airways.
-
Enid Neptune Lab
Work in the Enid Neptune Lab focuses on topics within the fields of pulmonary and critical care medicine. Our research centers primarily on therapeutic strategies for Marfan syndrome and hepatocyte growth factor signaling in airspace homeostasis. We also conduct research on chronic obstructive pulmonary disease (COPD), with a focus on its mechanisms and potential methods for preventing its progression. Our research within critical care has most recently involved investigating superoxide dismutase 3 dysregulation in neonatal lung injuries.
-
Franco D’Alessio Lab
The Franco D’Alessio Lab investigates key topics within the fields of critical care, internal and pulmonary medicine. We primarily explore immunological determinants of acute lung inflammation and repair. Our lab also investigates age-dependent lung immune response in patients with acute lung injury and acute respiratory distress syndrome (ARDS), regulatory T-cells in lung injury and repair, and modulation of alveolar macrophage innate immune response in ARDS.
-
Gregory Diette Laboratory
The Gregory Diette Laboratory studies the epidemiology of lung diseases. Our focus is on asthma, chronic obstructive pulmonary disease (COPD) and environmental causes of lung disease, including allergens and particulate matter.
-
Hartmut Schneider Lab
The Hartmut Schneider Lab studies sleep medicine and respiratory physiology during sleep. Our team develops ways to diagnose and treat patients with obstructive sleep apnea and chronic obstructive pulmonary disease (COPD). Recent inventions include a disposable pneumotachometer and a device for nasal air insufflations (NI). We recently developed a way to use both sleep and nasal insufflation treatments to reduce metabolic demand in patients with cystic fibrosis, a discovery which is now being tested in a clinical trial evaluating ways to slow down pulmonary cachexia.
-
Henry Fessler Lab
Research in the Henry Fessler Lab is focused on pulmonary medicine. We are interested in heart-lung interaction, mechanical ventilation and lung mechanics. We’re also interested in medical education and recently examined contemporary strategies for effective lecturing.
-
James Sham Lab
Research in the James Sham Lab focuses on pulmonary arteries. Studies include local calcium signaling in the pulmonary arteries and transient receptor potential (TRP) channels in pulmonary arterial smooth muscle cells. We’re also interested in calcium regulation in chronic hypoxic pulmonary hypertension.
-
Jason Kirkness Lab
Research in the Jason Kirkness Lab focuses on sleep disorders, including obstructive sleep apnea. We’re also interested in nocturnal ventilation and upper airways construction. We’ve used inspiratory airflows during standard polysomnography to assess pharyngeal function in children during sleep and examined the impact of increased lung volume in chronic obstructive pulmonary disease (COPD) on upper airway obstruction during sleep.
-
Jonathan Jun Lab
The Jonathan Jun Lab studies the function of lipolysis in intermittent hypoxia-induced insulin resistance.
-
Kristin Riekert Lab
Work in the Kristin Riekert Lab focuses on methods for improving health care quality and delivery, particularly among underserved and disadvantaged populations. Our research covers a range of important topics, including health beliefs, treatment adherence, doctor-patient communication, self-management interventions, mobile health initiatives, health disparities and patient-reported outcome methodology. We also work with the National Institutes of Health on multiple intervention trials focused on improving adherence and health outcomes in asthma, chronic kidney disease, cystic fibrosis (CF), sickle cell disease and secondhand smoke reduction.
-
Landon King Lab
The Landon King Lab studies aquaporins water-specific membrane channel proteins. We hope to understand how these proteins contribute to water homeostasis in the respiratory tract and how their expression or function may be altered in disease states.
-
Larissa Shimoda Lab
Research in the Larissa Shimoda Lab focuses on several important topics within pulmonary and critical care medicine. We primarily study pulmonary arterial responses to chronic hypoxia as well as hypoxic pulmonary vasoconstriction and oxidant-mediated lung injury. Our recent research has included investigating the effects of chronic hypoxia on pulmonary circulation and the ways in which hypoxia-inducible factors impact pulmonary vascular responses to hypoxia. We have also studied vascular remodeling in patients with pulmonary hypertension.
-
Lonny Yarmus Lab
Clinical trials conducted in the Lonny Yarmus Lab focus primarily on minimally-invasive diagnostic testing for patients with lung cancer and local therapy options for malignant airway obstructions. We investigate ways to improve the early diagnosis of lung cancer, as well as the treatment of later-stage cancer, using the least invasive methods possible. We are also part of the LIBERATE clinical study for patients who have difficulty breathing and suffer from severe emphysema.
-
Mahendra Damarla Lab
Work in the Mahendra Damarla Lab focuses primarily on the field of vascular biology. Much of our research involves exploring alternatives to mechanical ventilation as a therapy for acute lung injury. We investigate mitogen-activated protein kinase-activated protein kinase 2 as a method to mediate apoptosis during lung vascular permeability by regulating movement of cleaved caspase 3. We have also conducted research on the prevalence of confirmatory tests in patients hospitalized with congestive heart failure or chronic obstructive pulmonary disease (COPD).
-
Maureen Horton Lab
The Maureen Horton Lab conducts research on pulmonary fibrosis through the use of both preclinical models and human trials. Our studies have helped to develop novel, genetic, tissue-specific models of immune dysfunction, which have aided in defining the immune regulation of fibrosis and in the development of treatment strategies. We have used T-cell skewing immunotherapy to prevent and reverse chemical-induced lung fibrosis and have conducted clinical trials for idiopathic pulmonary fibrosis (IPF), which led to one of the first treatments that helped to improve quality of life in IPF patients.
-
Meredith McCormack Lab
Research in the Meredith McCormack Lab deals primarily with pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and the role of environmental exposures in lung diseases. We have researched the factors that contribute to inner-city asthma, with a focus on how particulate matter air pollution impacts pulmonary function. We are also part of the LIBERATE clinical study, which is focused on patients who experience difficulty breathing and have been diagnosed with severe emphysema. We also have a longstanding interest in the effects of race/ethnicity, poverty and urbanization on nutrition and food allergies.
-
Michael Drummond Lab
Research in the Michael Drummond Lab focuses primarily on obstructive lung diseases and HIV. We work to characterize the mechanisms for development of chronic lung disease in patients with HIV, with an emphasis on studying the pulmonary compartment of smokers who have HIV and are at risk for or have developed chronic obstructive pulmonary disease (COPD). Our lab also explores the longitudinal impact of smoking, HIV infection and tobacco use on long-term outcomes in COPD patients. In addition, we investigate smoking cessation in inner-city populations and are involved in the LIBERATE study of patients with severe emphysema.
-
Michelle Eakin Lab
The Michelle Eakin Lab conducts research on behavioral science and adherence and asthma outcomes in inner-city children. Our studies into behavioral science have included exploring the impact of medication adherence on lung health outcomes in patients with cystic fibrosis, disparities in anti-hypertensive medication adherence in adolescents and other key topics. We also investigate methods for improving asthma care and treatment as well as health disparities among various ethnicities, particularly in pediatric patients.
-
Nadia Hansel Lab
Research in the Nadia Hansel Lab investigates the clinical, pathophysiologic and public health aspects of pulmonary diseases, with a focus on asthma and chronic obstructive pulmonary disease (COPD). We have explored how environmental exposures, nutrition and diet, comorbidity and other factors influence the outcomes of diseases such as asthma and COPD.
-
Naresh Punjabi Lab
The Naresh Punjabi Lab primarily studies sleep apnea, epidemiology, cardiovascular disease, insulin resistance and type 2 diabetes. Our current research focuses on the epidemiology of sleep apnea with a particular emphasis on associated sequelae, including insulin resistance, type 2 diabetes mellitus and cardiovascular disease. We have been part of the multi-center Sleep Heart Health Study, an epidemiological study on the longitudinal effects of sleep apnea on hypertension, cardiovascular disease and mortality. Our lab is examining the independent effects of intermittent hypoxia on various pathways to help elucidate the links between sleep apnea, insulin resistance and metabolic dysfunction.
-
Natalie West Lab
The Natalie West Lab collaborates with Noah Lechtzin’s lab to study cystic fibrosis, with a particular focus on new resistant bacteria and their effect on the lung function of people with cystic fibrosis.
-
Neil Aggarwal Lab
Research interests in the Neil Aggarwal Lab include the onset and treatment of acute respiratory distress syndrome. We’re also interested in genotyping and acute lung injury. Recently, we conducted a comprehensive review comparing the diagnostic accuracy of established and emerging imaging modalities for cardiac sarcoidosis.
-
Noah Lechtzin Lab
Research in the Noah Lechtzin Lab investigates several important aspects of cystic fibrosis (CF), including the impact of antibiotic-resistant bacterial infections in CF patients and new therapy options for individuals with CF. Our research into new CF therapies has included studies on home electronic symptom and lung function monitoring, transbronchial needle aspiration and bedside percutaneous endoscopic gastrostomy tube placement. We also explore the role of metabolic complications in CF patients by examining how the disease is impacted by factors such as vitamin D deficiency, osteoporosis and testosterone deficiency.
-
Outcomes After Critical Illness and Surgery Group
The Outcomes After Critical Illness and Surgery Group is focused on understanding and improving patient outcomes after critical illness and surgery. Research projects include improving long-term outcomes research for acute respiratory distress syndrome/acute respiratory failure (ARDS/ARF) patients; examining the long-term outcomes for acute lung injury/acute respiratory distress syndrome (ALI/ARDS) patients; and evaluating the effects of lower tidal volume ventilation and other aspects of critical illness and ICU care on the long-term physical and mental health outcomes of ALI/ARDS patients.
-
Pali Shah Lab
Research in the Pali Shah Lab focuses on lung transplants. Specifically, we’re interested in chronic rejection and quality and safety as they relate to lung transplants.
-
Patrick Sosnay Lab
The Patrick Sosnay Lab conducts translational research on cystic fibrosis. We also study genotype-phenotype relationships in patients with cystic fibrosis.
-
Paul M. Hassoun Lab
The Paul M. Hassoun Lab leads research on the source and treatment of pulmonary arterial hypertension in scleroderma.
-
Peter Terry Lab
Work in the Peter Terry Lab deals primarily with ethical questions surrounding patientsÕ end-of-life care and decision making. We explore topics such as family involvement in health care decision making, informed consent in clinical medicine and effectiveness of palliative support care. Our team has investigated the development and validation of a family decision-making self-efficacy scale. Our research has also included exploring the ethics around the allocation of lifesaving resources during a disaster.
-
Philip Smith Lab
Work in the Philip Smith Lab explores several key topics within the field of sleep medicine. We investigate the role of obesity and neural control in sleep-disordered breathing as well as the impact of metabolic function on sleep apnea. We also research the ways in which HIV and its treatments impact a patient’s sleep. Our studies have included the effects of HIV and highly active antiretroviral therapy (HAART) on both sleep and daytime function as well as the relationship between systemic inflammation and sleep apnea in men with HIV.
-
Rachel Damico Lab
Work in the Rachel Damico Lab explores topics within the fields of vascular biology and pulmonary medicine, with a focus on acute lung injury and apoptosis in lung diseases. Our studies have included examining idiopathic and scleroderma-associated pulmonary arterial hypertension, vascular receptor autoantibodies, and the link between inflammation and the Warburg phenomenon in patients with pulmonary arterial hypertension. We have also researched the inhibitory factor of macrophage migration and its governing of endothelial cell sensitivity to LPS-induced apoptosis.
-
Rashmi Nisha Aurora Lab
Work in the Rashmi Nisha Aurora Lab explores topics within the field of sleep medicine, with a focus on pulmonary diseases that are disruptive to sleep and the use of polysomnography for diagnosing sleep disorders. Our recent research has included studies on home sleep testing for sleep apnea patients, the relationship between sleep-disordered breathing and caffeine consumption, and how obstructive sleep apnea impacts type 2 diabetes in older adults. We also have an interest in critical care medicine and have conducted studies on the ongoing effects of traumatic brain injuries on sleep.
-
Robert Wise Lab
The Robert Wise Lab conducts clinical trials to study chronic obstructive lung diseases (COPD). We investigate inhaled corticosteroids in patients with mild to moderate COPD and the effectiveness of anti-inflammatories in allowing lung growth in mild to moderate asthmatic children. Our research includes exploring the efficacy of various treatments for asthmatic women who are pregnant and of lung-volume reduction surgery for emphysema patients. We also conduct studies of the clinical epidemiology, pathobiology and treatment of interstitial lung disease in patients with scleroderma.
-
Roy Brower Lab
The Roy Brower Lab conducts clinical trials related to the management of acute respiratory distress syndrome (ARDS). Our research also involves oxygen toxicity, a potentially fatal condition caused by too much supplemental oxygen.
-
Sonye Danoff Lab
Research in the Sonye Danoff Lab includes both basic and translational studies of lung fibrosis. We have explored topics such as the role of support measures and palliative care, pulmonary manifestations of Sjogren's syndrome, idiopathic inflammatory myopathies and the treatment of cough in idiopathic pulmonary fibrosis. Our research has also involved investigating the lung as a potential target for the immune reaction in myositis.
-
Stephen Mathai Lab
The Stephen Mathai Lab focuses its research on pulmonary medicine. We're particularly interested in scleroderma-associated pulmonary hypertension, pulmonary complications of connective tissue disease, idiopathic pulmonary fibrosis and pulmonary hypertension.
-
Venkataramana Sidhaye Lab
We are interested in basic and translational studies looking at the effects of environmental exposures, including cigarette smoke and electronic cigarettes, on lung epithelial function. We are focused on mechanisms to reverse injury to promote lung health, primarily in the context of Chronic Obstructive Pulmonary Disease (COPD).
-
William Checkley Lab
Research in the William Checkley Lab explores the field of lung health, with an emphasis on the epidemiology of obstructive lung diseases as well as acute lung injury and mechanical ventilation. We also explore the interactions between nutrition and infection, and the impact of environmental exposures to health.
- 1