In This Section      
 

Cardiology Labs

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  • Interventional Cardiology Research Group

    Our group is interested in a broad array of clinical and translational investigations spanning the evaluation of basic pathophysiology in patients undergoing cardiac procedures, development and evaluation of new therapeutic strategies, and improving patient selection and outcomes following interventional procedures. We are comprised of a core group of faculty and dedicated research nurses as well as fellows, residents, and students. Projects range from investigator-initiated single-center observational studies to industry-sponsored multicenter phase 3 randomized controlled trials. We have established a database of all patients who have undergone TAVR at Johns Hopkins, which is providing the basis for several retrospective analyses and will serve as the foundation for future studies of TAVR. We are also engaged in collaborative projects with other groups from the Department of Medicine and other Departments including Cardiac Surgery, Anesthesiology, Radiology, Psychiatry, and Biomedical... Engineering. Members of our group are actively involved with the Johns Hopkins Center for Bioengineering Innovation and Design (CBID) in the development of novel minimally-invasive cardiovascular devices. view more

    Research Areas: coronary CT angiography, PCI, bioprosthetic leaflet thrombosis, myocardial regeneration, TAVR

    Principal Investigator

    Jon Resar, M.D.

    Department

    Medicine

  • Joseph Mankowski Lab

    The Joseph Mankowski Lab studies the immunopathogenesis of HIV infection using the SIV/macaque model. Our researchers use a multidisciplinary approach to dissect the mechanism underlying HIV-induced nervous system and cardiac diseases. Additionally, we study the role that host genetics play in HIV-associated cognitive disorders.

    Research Areas: macaques, HIV, genomics, SIV, pathogenesis, cardiology, nervous system

    Principal Investigator

    Joseph L. Mankowski, D.V.M., Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • Judge Lab

    The primary research focus of the Judge Lab, led by Daniel P. Judge, MD, is translational cardiovascular genetics. Currently, we are investigating genetics and pathophysiology of arrhythmogenic right ventricular dysplasia (ARVD), genetic mechanisms of mitral valve disease, and the genetics of inherited cardiomyopathies.

    Other research projects for the lab, also known as the Center for Inherited Heart Disease, include:
    • genetic investigation of various forms of cardiomyopathy (hypertrophic, dilated, and restrictive);
    • genetic factors contributing to sudden cardiac death;
    • the relationship between inherited forms of cardiomyopathy and related forms of muscular dystrophy; and
    • the causes and best treatments for the cardiovascular manifestations of Marfan syndrome and related vascular diseases.

    Daniel P. Judge, MD, is Director of the Center for Inherited Heart Disease and an
    associate professor of medicine at Johns Hopkins University.

    Research Areas: cardiovascular, genomics, muscular dystrophy, Marfan syndrome, vascular diseases, cardiomyopathy

    Lab Website

    Department

    Medicine

  • Kass Lab

    Basic science investigations span an array of inquiries, such as understanding the basic mechanisms underlying cardiac dyssynchrony and resynchronization in the failing heart, and beneficial influences of nitric oxide/cGMP/protein kinase G and cGMP-targeted phosphdiesterase signaling cascades on cardiac maladaptive stress remodeling. Recently, the latter has particularly focused on the role of phosphodiesterase type 5 and its pharmacologic inhibitors (e.g. sildenafi, Viagra®), on myocyte signaling cascades modulated by protein kinase G, and on the nitric oxide synthase dysregulation coupled with oxidant stress.

    The lab also conducts clinical research and is presently exploring new treatments for heart failure with a preserved ejection fraction, studying ventricular-arterial interaction and its role in adverse heart-vessel coupling in left heart failure and pulmonary hypertension, and testing new drug, device, and cell therapies for heart disease. A major theme has been with the use ...of advanced non-invasive and invasive catheterization-based methods to assess cardiac mechanics in patients.asive and invasive catheterization-based methods to assess cardiac mechanics in patients.

    David Kass, MD, is currently the Director at the Johns Hopkins Center for Molecular Cardiobiology and a professor in cellular and molecular medicine.
    view more

    Research Areas: pulmonary hypertension, heart disease, cardiac hypertrophy, heart failure, cardiology

    Lab Website

    Principal Investigator

    David Kass, M.D.

    Department

    Medicine

  • Lima Lab

    The Lima Lab’s research is concentrated on the development and application of imaging and technology to address scientific and clinical problems involving the heart and vascular system.

    Specifically, our research is focused on developing magnetic resonance imaging (MRI) contrast techniques to investigate microvascular function in patients and experimental animals with myocardial infarction; functional reserve secondary to dobutamine stimulation and myocardial viability assessed by sodium imaging; and cardiac MRI and computed tomography (CT) program development of techniques to characterize atherosclerosis in humans with cardiovascular or cerebrovascular disease.

    Current projects include:
    • The Coronary Artery Risk Development in Young Adults (CARDIA) Study
    • The MESA (Multi-Ethnic Study of Atherosclerosis) Study
    • The Coronary Artery Evaluation using 64-row Multidetector Computed Tomography Angiography (CORE64) Study

    Joao Lima, MD, is a professor of medicine, radiology and... epidemiology at the Johns Hopkins School of Medicine. view more

    Research Areas: magnetic resonance, cerebrovascular, imaging, cardiovascular, cardiology, atherosclerosis, computed tomography, vascular, myocardial infarction

    Lab Website

    Principal Investigator

    Joao Lima, M.B.A., M.D.

    Department

    Medicine

  • Mary Beth Brady Lab

    Research in the Mary Beth Brady Lab focuses primarily on topics within the fields of anesthesiology, imaging and cardiology. Our work has explored transesophageal echocardiography simulation, echocardiography, cardiac and vascular-thoracic anesthesiology, and other areas within critical care medicine. A recent study involved obtaining 3-D images of the heart, which were then used to build computer programs to help cardiac surgeons improve their treatment of heart defects.

    Research Areas: critical care medicine, cardiac anesthesiology, imaging, transesophageal echocardiogram, anesthesiology, cardiology, echocardiography, vascular-thoracic anesthesiology

  • O'Rourke Lab

    The O’Rourke Lab uses an integrated approach to study the biophysics and physiology of cardiac cells in normal and diseased states.

    Research in our lab has incorporated mitochondrial energetics, Ca2+ dynamics, and electrophysiology to provide tools for studying how defective function of one component of the cell can lead to catastrophic effects on whole cell and whole organ function. By understanding the links between Ca2+, electrical excitability and energy production, we hope to understand the cellular basis of cardiac arrhythmias, ischemia-reperfusion injury, and sudden death.

    We use state-of-the-art techniques, including single-channel and whole-cell patch clamp, microfluorimetry, conventional and two-photon fluorescence imaging, and molecular biology to study the structure and function of single proteins to the intact muscle. Experimental results are compared with simulations of computational models in order to understand the findings in the context of the system as a whole....

    Ongoing studies in our lab are focused on identifying the specific molecular targets modified by oxidative or ischemic stress and how they affect mitochondrial and whole heart function.

    The motivation for all of the work is to understand
    • how the molecular details of the heart cell work together to maintain function and
    • how the synchronization of the parts can go wrong

    Rational strategies can then be devised to correct dysfunction during the progression of disease through a comprehensive understanding of basic mechanisms.

    Brian O’Rourke, PhD, is a professor in the Division of Cardiology and Vice Chair of Basic and Translational Research, Department of Medicine, at the Johns Hopkins University.
    view more

    Research Areas: biophysics, ischemia-reperfusion injury, imaging, electrophysiology, cardiovascular, arrhythmia, physiology, sudden cardiac death, molecular biology, cardiac cells

    Lab Website

    Principal Investigator

    Brian O'Rourke, Ph.D.

    Department

    Medicine

  • Post Lab

    The Post Lab is involved in the Multi-Ethnic Study of Atherosclerosis (MESA), a collaborative study of the characteristics of subclinical cardiovascular disease (that is, disease detected non-invasively before it has produced clinical signs and symptoms) and the risk factors that predict progression to clinically overt cardiovascular disease or progression of the subclinical disease.

    As MESA researchers, we study a diverse, population-based sample of 6,814 asymptomatic men and women aged 45-84. Approximately 38 percent of the recruited participants are white, 28 percent African-American, 22 percent Hispanic, and 12 percent Asian, predominantly of Chinese descent.

    Participants were recruited from six field centers across the United States, including Johns Hopkins University. Each participant received an extensive physical exam to determine a number of conditions, including coronary calcification, ventricular mass and function, flow-mediated endothelial vasodilation, standard coron...ary risk factors, sociodemographic factors, lifestyle factors, and psychosocial factors.

    Selected repetition of subclinical disease measures and risk factors at follow-up visits have allowed study of the progression of disease. Participants are being followed for identification and characterization of cardiovascular disease events, including acute myocardial infarction and other forms of coronary heart disease (CHD), stroke, and congestive heart failure; for cardiovascular disease interventions; and for mortality.

    Wendy S. Post, MD, MS, is an associate faculty, Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, and a professor of medicine.
    view more

    Research Areas: coronary artery disease, cardiovascular, ethnicity, pathogenesis, atherosclerosis, sudden cardiac death

    Lab Website

    Principal Investigator

    Wendy Post, M.D., M.S.

    Department

    Medicine

  • Retrovirus Laboratory

    Research in the Retrovirus Laboratory focuses on the molecular virology and pathogenesis of lentivirus infections. In particular, we study the simian immunodeficiency virus (SIV) to determine the molecular basis for the development of HIV CNS, pulmonary and cardiac disease.

    Research projects include studies of viral molecular genetics and host cell genes and proteins involved in the pathogenesis of disease. We are also interested in studies of lentivirus replication in macrophages and astrocytes and their role in the development of disease. These studies have led us to identify the viral genes that are important in neurovirulence of SIV and the development of CNS disease including NEF and the TM portion of ENV. The mechanisms of the action of these proteins in the CNS are complex and are under investigation. We have also developed a rapid, consistent SIV/macaque model in which we can test the ability of various antiviral and neuroprotective agents to reduce the severity of CNS and ...pulmonary disease. view more

    Research Areas: HIV, genomics, pulmonology, SIV, cardiology, lentivirus

    Principal Investigator

    Janice Clements, Ph.D.

    Department

    Molecular and Comparative Pathobiology

  • The Arking Lab

    The Arking Lab studies the genomics of complex human disease, with the primary goal of identifying and characterizing genetics variants that modify risk for human disease. The group has pioneered the use of genome-wide association studies (GWAS), which allow for an unbiased screen of virtually all common genetic variants in the genome. The lab is currently developing improved GWAS methodology, as well as exploring the integration of additional genome level data (RNA expression, DNA methylation, protein expression) to improve the power to identify specific genetic influences of disease.

    The Arking Lab is actively involved in researching:
    • autism, a childhood neuropsychiatric disorder
    • cardiovascular genomics, with a focus on electrophysiology and sudden cardiac death (SCD)
    • electrophysiology is the study of the flow of ions in biological tissues

    Dan E. Arking, PhD, is an associate professor at the McKusick-Nathans Institute of Genetic Medicine and Department of Medicine, D...ivision of Cardiology, Johns Hopkins University. view more

    Research Areas: autism, genetics, aging, cardiovascular diseases, sudden cardiac death

    Principal Investigator

    Dan Arking, Ph.D.

    Department

    Medicine

  1. 1
  2. 2
  3. 3