Skip Navigation
 
 
 
 
Wilmer Eye Institute
 
Print This Page
Share this page: More
 

Excimer Laser Keratectomy at Wilmer

Excimer Laser Keratectomy at Wilmer

The excimer laser removes anterior corneal tissue layer by layer to a predetermined depth. It is able to do this precisely and accurately by using ultraviolet light. Clinical studies are underway to assess the safety and therapeutic effectiveness of the VISX Twenty/Twenty Excimer Laser System in performing phototherapeutic keratectomy (PTK) on pathological conditions of the cornea, and photorefractive keratectomy (PRK) to treat high myopia. Electron microscopic, immunohistochemical and morphometric analyses of epithelial-stromal interactions in the cornea, are being used to study wound healing after excimer laser surgery.

Following excimer keratectomy, there is a relative delay in the reformation of corneal epithelial basement membrane and adhesion structures. We performed morphometric analyses of the reformation of the epithelial adhesion structures in human corneal tissue after excimer laser treatment. Immunohistochemical techniques will also be used for epithelial basement membrane adhesion structure localization.

Improving the Healing Mechanism

Extracellular matrix remodeling may determine the visual outcome of patients undergoing excimer keratectomy. The aims of our research are to obtain information about the expression in corneal tissue of collagenases and their inhibitors following excimer wounds and to correlate their levels with stromal scarring and remodeling. An organ culture wound-healing system will be used to determine the effect of collagenases, their inhibitors, and their activators.

The processes of stromal scarring and subsequent clearing, clinically observed 1 to 6 months post-excimer keratectomy, may be related to the balance of proteins involved in matrix regulation. Quantitative analysis of stromal collagenases will be determined before, during, and after scar formation and clearing. This will be correlated with corneal light scattering and with newly-synthesized collagen. These experiments aimed at elucidating the role of collagenase production, activation, and inhibition in post-excimer corneal matrix remodeling will increase our understanding of corneal wound healing as well.

Dr. Sheila West on the Link Between Smoking and Eye Disease in Women - 7/23/2014

Dr. Pradeep Ramulu and Colleagues Study Relationship Between Vision Loss and Work Status - 7/18/2014

Wilmer Resident Receives Lindstrom Research Grant - 7/11/2014

Four Wilmer Researchers Receive BrightFocus Foundation Awards - 7/10/2014

Dr. Michael Repka Part of Team Researching Telemedicine and ROP - 6/27/2014

Dr. M. Valeria Canto-Soler and Colleagues Featured on WBAL-TV - 6/24/2014

Dr. M. Valeria Canto-Soler and Colleagues Use Human Stem Cells to Create Light-Sensitive Retina in a Dish - 6/10/2014

Wilmer's Division of Ocular Immunology Announces "Living With Uveitis" Support Group - 6/10/2014

Dr. Neil Bressler to Speak on Diabetic Retinopathy at National Eye Health Summit and Webcast - 6/10/2014

Dr. Donald Zack Receives a Research to Prevent Blindness Nelson Trust Award for Retinitis Pigmentosa - 6/9/2014

Dr. Michael Boland Leads Study on Effectiveness of Automated Telecommunication-Based Reminders on Adherence to Glaucoma Medication Dosing - 6/4/2014

Dr. Christina Prescott Discusses Summer Eye Protection on Fox 45 News - 6/1/2014

Dr. Jonathan Song Discusses Treatment Options for Pediatric Cataracts - 5/23/2014

Johns Hopkins' Jordan Green Discusses His Work at Wilmer's Translational Tissue Engineering Center - 5/21/2014

Longtime Wilmer Employee Lillie Alston Honored by Hopkins - 5/19/2014

Dr. Richard Semba: Diets Rich in Antioxidant Resveratrol Fail to Reduce Deaths, Heart Disease or Cancer - 5/12/2014

Dr. Neil Miller Explains Eye Twitching in The Wall Street Journal - 5/12/2014

Dr. Hendrik Scholl Receives ARVO Award - 5/7/2014

 

Traveling for care?

blue suitcase

Whether crossing the country or the globe, we make it easy to access world-class care at Johns Hopkins.

U.S. 1-410-464-6713 (toll free)
International +1-410-614-6424

 

 
 
 
 
 

© The Johns Hopkins University, The Johns Hopkins Hospital, and Johns Hopkins Health System. All rights reserved.

Privacy Policy and Disclaimer