With collaborations proliferating between Wilmer’s biomedical engineers and ophthalmologists, breakthroughs in treatment are imminent.
Dear Wilmer Friends and Faculty:

If 2009 was the year of the new building, then 2010 is shaping up as the year of discoveries!

Certainly a highlight of last year was the opening of Wilmer’s fourth building, the Robert H. and Clarice Smith Building. After we opened the laboratories in July and the operating rooms in August, the new building quickly became a beehive of activity. Our patients, nurses, and doctors immediately loved the new Bendann Surgical Pavilion, and our patient satisfaction scores skyrocketed.

Four of our five floors of research space are now fully occupied, and it is exciting to see our aspirations for the new building become reality. In the research world, word has gotten out about this magnificent new facility. At least once a week, I am contacted by a brilliant researcher interested in joining our team. We have been recruiting the best and the brightest from around the world to come work in partnership with Wilmer’s current superstars.

Speaking of superstar scientists, we have celebrated three discoveries already this year that have the potential to dramatically impact ophthalmology. Dr. Neil Bressler, the James Gills Professor, recently testified before Congress about a study showing a dramatically improved means for treating diabetic macular edema. Meanwhile, Dr. Albert Jun has genetically engineered a mouse with the same mutation that occurs in humans with the most commonly inherited corneal disease: Fuchs’ dystrophy. This opens the door to the study of potential new therapies. Finally, Dr. Shannath Merbs has developed an instrument that will greatly improve surgical outcomes in patients suffering from trachoma, the leading infectious cause of blindness worldwide.

No doubt we’ll see more and more amazing new discoveries and improvements in how we care for our patients over the coming years. I’m thrilled with our exciting start!

My sincere best wishes,

Peter J. McDonnell, MD
William Holland Wilmer Professor and Director
Message from Bressler to Congress: Increase Funding

It wasn’t the first time Neil Bressler, chief of Wilmer’s Retina Division, testified before Congress—and it likely won’t be the last. His visit last May could be the most significant to date, however, in light of the landmark research results he shared with members of the House Labor, Health and Human Services and Education Appropriations Subcommittee.

Representing the American Academy of Ophthalmology, Bressler urged Congress to fund the National Institutes of Health (NIH) and the National Eye Institute (NEI) at $35 billion and $795 million, respectively, for fiscal year 2011. These amounts were greater than the proposed 2.5 percent increase—but necessary, he said, to conquer low vision and eye disease challenges for growing numbers of patients in this country and worldwide.

Bressler substantiated his request with recent proof of how federal research dollars can lead to new discoveries. Just-released results from an NEI-funded study provided definitive confirmation—for the first time in 25 years—of a new and more effective treatment for diabetic macular edema, which affects approximately 1 million Americans. Macular edema occurs when blood vessels of the light-sensitive retina, which lines the back of the eye, begin to leak fluid and swell after being damaged by elevated sugar levels in the blood. The result: vision loss and often blindness.

The study involved nearly 700 patients at Wilmer and 51 other clinical sites within the Diabetic Retinopathy Clinical Research Network. The results confirmed that laser treatment for diabetic macular edema, when combined with injections of the FDA-approved drug Lucentis, is more effective than laser treatment alone, which has been the standard course of care for the last quarter century.

“Nearly 50 percent of patients who received this new treatment experienced substantial visual improvement,” stated Bressler, the network’s chairman. “Congress’ investment to the NIH makes studies such as these possible—and it’s an example of the huge and successful impact these funding increases can have on quality of life and productivity.”

Bressler felt that his message was well received by House committee members, but final funding decisions have not been made. “This is a tough appropriations cycle,” he admits.

Funding from the NIH and NEI is critical to Wilmer’s research efforts, Bressler stresses. “They are the largest funders of biomedical research in the world, and so they are one of our largest sources of funding for the critical research we do. That being said, the funds are quite competitive and you need solid preliminary data to compete. This is where private philanthropy can be so critical. It provides the necessary unrestricted funds to jumpstart initial projects that provide that critical preliminary data.”

—Marlene England
In 1910, when Austrian ophthalmologist Ernst Fuchs first diagnosed the corneal disorder that now bears his name, he probably couldn’t have imagined what Albert Jun would discover 100 years in the future.

In a major breakthrough discovery, Jun has found a way to fast forward Fuchs’ dystrophy research. Using a gene mutation known to cause Fuchs’ dystrophy in humans, he created a strain of mice that develops an identical version of the disease—and in doing so, Jun collapsed dramatically the time frame between research and results.

Fuchs’ dystrophy is a relatively common inherited disease that causes cloudy corneas and loss of vision. After diagnosis, typically in middle-aged patients, symptoms can take decades to develop, which makes studying the disease and evaluating new treatments a frustratingly slow process—until now.

“It took about six years to find out that we had a perfectly suited model for human disease, including one year for the mice to age,” Jun explains. “The eyes of a middle-aged mouse and a middle-aged human make for a very accurate correlation.” Because mice have a short lifespan, studying the disease and testing new treatments can occur much more quickly than in human-based studies. Until now, doctors have had to observe Fuchs’ dystrophy patients for years before learning if and how a new treatment might improve vision.

Jun believes that deciphering the abnormal cellular processes that occur early on in Fuchs’ dystrophy—and finding answers faster with mice than with patients—will lead to more effective non-surgical therapies. This alternative is, of course, more favorable than waiting for the cornea to fail and performing a corneal transplantation.

Together with fellow researcher Justin Hanes, director of the Center for Nanomedicine at Johns Hopkins, Jun plans to develop and test medical treatments for Fuchs’ dystrophy in mice. If safe and successful, these treatments could provide the basis for early-stage clinical trials in humans in the very near future.

—ME
Yau Inducted into National Academy of Sciences

K
ing-Wai Yau tries to keep a low profile, but the
professor of neuroscience and ophthalmology at
Johns Hopkins may have a harder time avoiding the
spotlight, given his recent induction into the prestigious
National Academy of Sciences.

In April, Yau was one of 72 new members elected in
recognition of their distinguished achievements in original
research. Being nominated and voted into the 147-year-old
private organization is considered one of the highest honors
for a scientist or engineer.

“It is very gratifying that my work has received this
recognition,” says Yau. “I tend to just lay low. I travel very
little and put all my time to my work. I let my publications
speak for themselves.”

Yau’s research focuses on the flow of molecular signals
important in sight and smell. Among his discoveries are
the critical roles played by two key signaling molecules—
calcium and cyclic GMP—in visual transduction, the
process of how light is converted into electrical signals
by the retina’s rod and cone photoreceptor cells. Yau’s
discoveries have helped advance the understanding of many
hereditary blinding diseases that affect these rod and cone
cells. He characterized the light-response behaviors of a
newly discovered photoreceptor cell that responds to light
and affects circadian rhythms and other non-image-forming
visual functions. He also contributed to finding the cause of
one form of central vision loss.

Since Yau joined the Johns Hopkins faculty in 1986, he
has received funding support from the National Institute
on Deafness and Other Communication Disorders, and the
National Eye Institute. In 2008, he and Wilmer colleague
Jeremy Nathans were honored to win the coveted $1.4
million António Champalimaud Vision Award for their
contributions to overall vision research.

—ME

Accessible Care from “Dr. Dan”

M
ore than 20 years ago, Daniel
Finkelstein and the late Arnall
Patz decided to offer free diabetic
retinopathy screenings for individuals with
no insurance. What began as a grassroots
outreach has grown to include several
hundred patients a year, each referred by
low-cost clinics and other providers in the
Baltimore area.

Earlier this year, Finkelstein and Wilmer
received the Hispanic Apostolate Award for
providing services to uninsured clients of
the Esperanza Center, a Catholic Charities human services
organization not far from Wilmer’s front doors. The center
works with Hispanic and other immigrants on language
skills, health care issues, and other areas of need. Finkelstein
sees several patients from the center every Monday. If
necessary, follow-up appointments are made for laser
treatment, also provided at no charge.

“Wilmer and Dr. Finkelstein recognize that this is
important care to provide,” says Maureen Monroy, manager
of the center’s health services. “They understand the needs
of this population and provide services that
are truly accessible. There’s a big difference
between available and accessible—and this is
the most accessible care I’ve ever seen.”

When clients tell one of the center’s
coordinators that they are diabetic, the
coordinator faxes the name and information
to Finkelstein’s office. Shortly after, a fax is
returned with the scheduled appointment
time. Clients then receive a map, provided
by Wilmer, which shows through pictures,
not words, how they can walk from the
Esperanza Center to Finkelstein’s office.

“Dr. Finkelstein is a big part of what we do here at the
Esperanza Center,” Monroy continues. “Around here, he’s
known as Dr. Dan. Our clients see him as someone they can
trust because they have this personal relationship with him.”

Finkelstein is quick to deflect any praise. “The reason we
wanted to be doctors in the first place was to offer care and
healing, and there are many people who can’t afford that.”
He adds “This service fulfills our original mission for people
in need.”

—ME
Potential Unleashed

With nearly a third of Wilmer’s new Smith Building dedicated to exploring biomedical engineering solutions to vision problems, collaborations are proliferating—and “big breakthroughs” in treatment are imminent.

By Marlene England
Photos By Mike Ciesielski
Since several promising biomedical engineers have relocated their labs to the Robert H. and Clarice Smith Building, almost every day brings a new idea, a new research direction to pursue. In the last few months, more ideas for collaborative research between biomedical engineering and ophthalmology have surfaced than in the previous decade at Wilmer, according to Wilmer Director Peter J. McDonnell.

He tells of a young faculty member who chatted recently with a biomedical engineer working on the same floor. “The ophthalmologist found out in a few minutes that this researcher might have the solution to a problem he’d been working on for 10 years. As a clinician, he knew the question but didn’t have the answer—and she, as a researcher, had the answer but didn’t know the question. I’d be shocked if there isn’t a treatment in a couple of years.”

That researcher is Jennifer Elisseeff, who recently moved her 37-person biomaterials and tissue engineering lab to Wilmer, and has caught the attention of Research to Prevent Blindness (RPB), the nation’s largest funder of vision research after the National Institutes of Health. Last spring, Elisseeff became the first person in Wilmer’s history to receive RPB’s prestigious Jules and Doris Stein Professorship. The professorship awards $500,000 over a five-year period and a matching grant of up to $150,000 to equip laboratory space. The award’s namesake, ophthalmologist Jules Stein, was founder of MCA Inc., the world’s largest producer of film entertainment. He was instrumental in launching RPB and later the National Eye Institute.

“This award is an external validation of what we’re trying to accomplish here—bringing together groups of people with different expertise to tackle previously unsolved problems,” McDonnell explains, adding that past award recipients comprise an impressive “Who’s Who” of the world’s leading scientists. “We’re extremely pleased that RPB recognizes the importance of biomedical engineering to vision issues and that they saw in Dr. Elisseeff a brilliant and dynamic scientist who could make things happen. She’s a superstar who joined a proven team of great people.”

Prior to moving to Wilmer, Elisseeff focused her lab’s efforts on developing biomaterials for musculoskeletal reconstruction, specifically related to knee cartilage. Now she has turned her attention to the eye—focusing on biomaterials that can repair and rebuild the cornea.

Last year, Elisseeff and Wilmer ophthalmologist Oliver Schein received a Department of Defense grant to develop technologies for ocular battlefield wounds, including a biosynthetic adhesive that is easily applied in the field. With the Stein professorship from RPB, Elisseeff can take her cutting-edge research even further. She plans to expand the concept of biomaterials-directed reconstruction to other parts of the eye, including the retina, and to other diseases, such as glaucoma.

“When your lab is already established, it takes a huge push to go in a different direction,” Elisseeff explains. “It’s really hard to get funding with no strings attached to pursue more high-risk ventures. This professorship gives me the freedom to explore new research interests.”

Inspired by her experiences as a Young Global Leader in the World Economic Forum, Elisseeff is also exploring how biomedical engineering and technology can improve vision health in Third World countries. Her initial focus is to develop and test biomaterials to treat corneal abrasions, which, when left untreated, may lead to corneal infection, a significant—yet preventable—cause of blindness.

“This is a new emphasis for my lab, and it’s really put that fire in me,” she says. Her recent trip to Tanzania for the Young Global Leaders’ annual meeting was “life changing” and further sparked her passion for tackling eye damage and disease on a global scale.

“It’s fair to say that no researchers with Dr. Elisseeff’s specific skill set have ever decided to apply their talent to this particular problem,” McDonnell comments. “She will be
new on the scene when it comes to biomedical engineering and global vision issues. Having someone like her interested in these problems is extremely significant.”

Elisseff is not alone in pushing the boundaries of traditional research at Wilmer. Justin Hanes, professor of ophthalmology and director of the Center for Nanomedicine at Johns Hopkins, is working with other Wilmer investigators to focus the power of nanotechnology on creating new drug and gene therapies for patients with vision disorders, including those that affect the back of the eye, such as age-related macular degeneration, and those that affect the cornea, such as Fuch’s dystrophy.

Jordan Green, assistant professor of Biomedical Engineering, is working with Wilmer’s Peter Campochiaro and Aleksander Popel from the Biomedical Engineering Department to develop anti-angiogenic peptides that can inhibit cell growth in neovascular age-related macular degeneration. “My lab is also interested in developing other technologies at the interface between ophthalmology and cell and tissue engineering,” Green says. “Since moving into the Smith building, we have formed new collaborations with other Wilmer faculty. My lab and I are very excited about these future opportunities.”

Chi Dang, vice dean for research at Hopkins, echoes Green’s excitement. “I am exuberant about the possibilities, which seem limitless, to lead the world in biomedical engineering in vision sciences,” he says, adding that the recruitment of Elisseff, Hanes, Green, and others into the Smith Building captures the vision of creating the world’s best initiative in biomedical cell engineering and nanotechnology for eye biology and disease treatment.

“This is an example of the Hopkins enterprise breaking down normal divisions to create an outstanding environment for collaborative science,” states Elliot McVeigh, director of Hopkins’ Department of Biomedical Engineering. Leveraging the close working relationship of Biomedical Engineering faculty with Wilmer faculty puts Wilmer in a unique position to develop novel technologies, he says. The implications are far-reaching because the same technologies that re-create a part of the eye or expedite treatment for vision problems can be applied to other parts of the body and other diseases.

Dang, McVeigh, and McDonnell are all grateful for the donors who invest and believe in Wilmer’s goal of bringing multiple disciplines together to tackle eye disease.

“Thirty percent of this building is already dedicated to exploring biomedical engineering solutions to vision problems—and, five years from now, the whole world will know about and benefit from the biomedical engineering solutions developed here,” McDonnell predicts. “We still have another floor to fill, and we will add new skill sets and the most brilliant new minds. We want home run after home run.”
Fast-Tracking New Treatments in Retinal Degeneration

When Wilmer launched the search for a leading expert in retinal degenerations, all roads led to Hendrik Scholl—even though he was nearly 4,000 miles and an ocean away.

By Marlene England
Photos By Mike Ciesielski
Scholl at that time was coordinator of the Tertiary Referral Center for Retinal Degenerations at the University of Bonn’s Department of Ophthalmology. He was asked to lead Wilmer’s visual neurophysiology services and clinical services for patients with retinal degenerations.

“We wanted to find someone who could lead our retinal degeneration program for clinical care and fast-track evaluation of new treatments,” explains Neil Bressler, chief of Wilmer’s Retina Division, noting that the new recruit is internationally recognized for his pioneering work with retinal diseases. “We were thrilled to get Dr. Scholl, who is a retinal degeneration researcher and a retinal surgeon. There aren’t many people like him in the world,” says Bressler.

Private philanthropic funds helped relocate the gifted scientist from his native Germany and enabled him to build a strong framework for his research program. After months of paperwork and packing, Scholl started at Wilmer on March 1.

Within a week, he was awarded a three-year, $510,000 Wynn-Gund Translational Research Award from the National Neurovision Research Institute, a support organization of the Foundation Fighting Blindness. The award was given to only one ophthalmology program in the United States to establish a new research program on retinal degeneration. Two weeks later, Scholl received another $100,000 award from the American Health Assistance Foundation.

The funding will accelerate Scholl’s translational research of how structure (seen by the latest imaging technology) and function correlate in genetically inherited retinal degenerations, such as retinitis pigmentosa, macular dystrophies, and age-related macular degeneration.

Recent cutting-edge technologies provide fascinating new tools with which Scholl can view and study the retina, the light-sensitive tissue that lines the back wall of the eye. Electroretinography—an EKG for the eyes—uses electrodes placed near the cornea to measure the retina’s response to light and detect abnormal function. Microperimetry is used to map the exact sensitivity of the central retina. Optical coherence tomography, or OCT, is a noninvasive imaging technique that provides high-resolution, cross-sectional images of the retina.

“We can now see minute changes in the retina—dense spots, loss of cell layers, thinning of the retina, and so on—things we’ve never been able to see before,” Scholl says. “But we have to consider the relevance of these abnormalities and what they mean to the function of the eye. We don’t want to direct intervention to abnormalities that have minimal impact on vision but rather would like to target changes that have a big impact on the patient’s vision.”

As new therapies are developed, this complex imaging technology can help establish new surrogate endpoints for clinical trials and for monitoring treatment effects with the highest accuracy. This information will dramatically improve the assessment of the patients’ retina. Until now, outcomes of drug therapies in particular have been measured by visual acuity, or how well a person sees. “The problem with relying solely on psychophysics is that the response of the patient is variable and easily influenced by fatigue or other factors,” Scholl explains. Through clinical trials, he intends to use new imaging methods to show that the correlation between structure and function is highly relevant for measuring treatment effect.

Scholl is equally passionate about gene therapy and the promise it holds with Dr. Scholl on board, we hope to be the premier site for initiating early- and late-stage clinical trials in retinal degenerations that will determine if we can change how these people are treated.

–Neil Bressler, chief of Wilmer’s Retina Division
for other diseases, particularly Leber’s congenital amaurosis, or LCA, a group of degenerative retinal diseases that are the most common cause of congenital blindness in children.

Currently, there are three clinical trials under way: two in the United States and one in the United Kingdom. Scientists hope to successfully replace the nonfunctioning gene with one that works—thus restoring vision. Preliminary results are very promising.

“Most patients with diseases like LCA have few options, and gene therapy is one of the only options,” Scholl says. A success in these clinical trials will show that the concept of molecular medicine is sound. If LCA can be treated effectively with gene therapy, it will point the way toward treatment of other diseases—including many previously untreatable conditions—caused by single, malfunctioning genes.

“We anticipate doing a lot of new clinical trials in this field in the future,” Bressler says. “With Dr. Scholl on board, we hope to be the premier site for initiating early- and late-stage clinical trials in retinal degenerations that will determine if we can change how these people are treated.”

Scholl notes that the eye is ideal for testing new therapies that could be applicable to the entire body. “While it is obviously connected to the rest of the body by blood and nerve tissue, the eye is a separate compartment,” he explains. “We only need to deliver a microscopic quantity of gene vector in order to try a treatment, unlike other gene therapy experiments in which the gene and the virus that carries it, known as a vector, can circulate throughout the whole body system.”

A major advantage of new treatment trials involving the eye is that the outcomes will be crystal clear. “The visual system has very precise, quantifiable measures of function, and even tiny measures of success can be documented,” Scholl says. “This is exactly my area of interest and expertise.”

“I’m in such a wonderful position and feel very lucky to have received funding right away,” Scholl adds. “But the credit goes to Wilmer and the people I’m surrounded by at this spectacular institution. Wilmer has such a wonderful environment, the patients, and everything needed for me to do all that I want to do.”
Wishes Come True,
Thanks to Merlau Philanthropy

When Dan Merlau dissected a horse’s eye in his third grade science class, he already knew about vitreous, the retina, rods, cones, and the optic nerve—thanks to his doctors at Wilmer.

Dan was just 8 years old when he and his parents visited Wilmer for the first time. It was the start of a long-standing and very important relationship between a patient, his parents, doctors, and an institution.

Dan’s father, Ken Merlau, chairman of Clipper Development Inc., a private equity advisory company he founded in 1993, had dealt with retinal issues for years—and so had Dan’s older brother. The family was worried that young Dan might also be at risk. When family friend and Wilmer supporter Michael Panitch heard of these concerns, he encouraged the Merlaus to travel from their home in Chicago to meet with Morton Goldberg at Wilmer and later with James Handa.

What came next was an extensive diagnostic process that impressed both parents and child. “Dr. Goldberg and Dr. Handa conducted in-depth interviews and examined 25 years of medical records from Ken before diagnosing a previously unidentified variation of Stickler syndrome,” explains Dan’s mother, Jo Merlau. Ken’s genetic tests confirmed the diagnosis, and the two doctors began proactively treating Dan’s retina because of the genetic link. Goldberg was in the process of reducing his clinical commitments, so most of Dan’s care became Handa’s responsibility.

“I’ll always remember when Dr. Handa took me on a tour of his research laboratory,” says Dan, who was 10 at the time and already considering a career as a medical research scientist. Listening to Handa talk about his interest in macular degeneration was fascinating to Dan—and to his parents, who decided to help fund Handa’s research.

“We believe that private philanthropy is incredibly important to pay for research in the early stages before institutional funds come into play,” explains Ken Merlau. “We contribute on an unrestricted basis to assure the greatest flexibility on the part of the researcher. We’re confident Dr. Handa’s work is at the leading edge of a breakthrough—not just in advanced treatment but also in discovering the organic cause and effect.”

The family’s contribution supported Handa’s discovery that the eyes of mice, after exposure to cigarette smoke, developed features consistent with early macular degeneration. Identifying cigarette smoke as the strongest risk factor (other than age) for macular degeneration provided the framework for Handa to obtain other funding, including a grant from the National Institutes of Health to evaluate how the mice’s immune response attempts to compensate for the smoke exposure. Now Handa’s lab is using genetic models to see which genes are most important in combating smoke damage. He hopes to develop “pharmacological rescues” that might protect eyes from the damage of cigarette smoke and lessen the likelihood of macular degeneration.

Without the Merlaus’ support, Handa says his research would have remained a very curious and provocative idea. “Years from now, I would still be thinking ‘I wish I could test it,’” Handa says. “Not only have they enabled me to do the research, but I’ve been able to expand my

““The minute I walked into Wilmer, I knew they had the right business model—and a world-class facility attracts world-class people like Dr. Handa. —Ken Merlau

—Ken Merlau
lab and recruit some top-notch people from all over the world with different areas of expertise.”

His eight-member team includes scientists from Venezuela, Poland, Iran, China, Japan, and Nigeria.

Being a businessman, Ken Merlau considers financial support for Handa more of an investment than a gift. “I invest in projects that have a good chance of success, and I back people who can deliver results,” he explains. “As I have gotten to know Dr. Handa over the years, I know he is a highly motivated, brilliant, and sensitive doctor, surgeon, and researcher. He is the perfect blend of clinical, surgical, and research disciplines. The minute I walked into Wilmer, I knew they had the right business model—and a world-class facility attracts world-class people like Dr. Handa.”

Growing up on a farm taught Merlau the importance of neighbors helping one another, and he has held fast to those values ever since. “I believe each individual can actually change the world and how we live in it. We have to look after each other. That’s how I feel about supporting Dr. Handa’s research. There are people whose family members are affected by macular degeneration and that can limit them from enjoying their retirement, their families, or their grandchildren—as I so enjoy my family and granddaughters.”

Dan Merlau is equally impressed with Dr. Handa and the progress he’s making in the lab. Now 16, Dan excels in his academic studies and was recently accepted into a special science research program at his school. “I know my experience with the kind of doctor Dr. Handa is and my tours of his research lab have further influenced me to want to be an MD and PhD,” Dan says. “I hope that one day I will be as great and respected a doctor and scientist as he is.”

The Merlau family hopes their generosity will be felt well beyond the walls of Wilmer. “If we can have some small part in supporting the important work of Dr. Handa and helping the wider community by preventing eye diseases,” says Ken Merlau, “then we will be very happy with the ‘return’ on our investment.”

“Not only have [the Merlaus] enabled me to do the research, but I’ve been able to expand my lab and recruit some top-notch people from all over the world with different areas of expertise.”

—James Handa

“…”

—ME
On Wednesday, April 21, the Wilmer Eye Institute welcomed special guests from Saudi Arabia and the Saudi Arabian Embassy in Washington, DC, to celebrate the partnership between the King Khaled Eye Specialist Hospital and the Wilmer Eye Institute. During the dedication ceremony of the KKESH/Wilmer Professorship of International Ophthalmology, Ashley Behrens, MD, was installed as the inaugural recipient.

On May 1, 2010, more than 100 members of the Independent Order of the Odd Fellows and Rebekahs Assemblies gathered at Wilmer to present an additional gift to support the Odd Fellows and Rebekahs Professorship, first established in 1963 at Wilmer. The Odd Fellows and Rebekahs have contributed more than $2 million to the Wilmer Eye Institute. Pictured are Henry Jampel, MD, third Odd Fellows and Rebekahs Professor (left) and Morton Goldberg, MD (second from right), receiving the gift from International President of the Rebekah Assemblies Brenda Reed, Sovereign Grand Master Paul Cuminale (middle), and Chairman of the IOOF Eye Research Foundation Wes Nelson (far right).

Our Work to Cure Blindness: Our Donors

The scientists and staff of the Wilmer Eye Institute at Johns Hopkins gratefully acknowledge our partners in philanthropy listed here. The generosity of these friends supports a tradition of collaboration and far-reaching investigation as, together, we pursue the complex challenges of eye diseases. While our space here is limited, our thankfulness is not. Although gifts of any amount are gratefully received, only gifts and pledge payments totaling more than $250 in the fiscal year ending June 30, 2010, could be listed in this report. If any donor was accidentally missed, or if you prefer to remain anonymous, please contact the Development Office at 410-955-2020.

Abbott Medical Optics, Inc.
Mr. David S. Abrams
Abraham Krasne Foundation
Akebia Therapeutics
Alcon Foundation, Inc.
Alcon Research, LTD
Mr. Benjamin Alexander
Mr. and Mrs. John Andelin
Mr. and Mrs. Walter Anderson
Anna Borun and Harry Borun Foundation
Anonymous (11)
Dr. and Mrs. Nakorn Apakupakul
Arnold and Mabel Beckman Foundation
Mr. and Mrs. Conrad Aschenbach
Mr. and Mrs. Alan Astrove
Mr. Martin Auerbach
Mr. Goutam Bagchi
Mr. and Mrs. William F. Baker, Jr.
Mr. and Mrs. Richard P. Baks
Mr. and Mrs. F. W. Bancroft
Mr. Melvin Barmat
Mr. and Mrs. Ronald Bartizek
Alycia J. Bartley-Heinsen, MD
Mr. and Mrs. Robert Bass
Mrs. Anne G. Baughman
Mrs. Pearl L. Baum
Ms. Margaret M. Bee
Belle K. Ribicoff Fund
Bender Foundation
Colonel and Mrs. George H. C. Berger
Joseph R. Bianchine, MD, PhD
Ms. Mary E. Blackman
Dr. and Mrs. William P. Blasé
Ms. Mary Jane Blaustein
Mrs. Ann A. Bosworth
Mr. Michel M. Boxbberger
Linnea R. Boyev, MD, PhD
Drs. Neil M. and Susan B. Bressler
Mr. and Mrs. Sidney Bressler
Mr. Richard J. Brisson*
Ms. Paula J. Brooks
Mr. George J. Brown
Mr. and Mrs. Howard N. Brownstein
Burlingame Foundation
Mrs. Mildred A. Burns
Mr. Michael F. Butler
Brig. Gen. and Mrs. Thomas J. Camp, Jr.
Ms. Barbara H. Cangiano
Mr. Edward Casel
Mr. Charles E. Castle Jr.

*deceased
Mr. and Mrs. Kenneth Merlau
Mrs. Maria D. Meyers
Michael and Deborah Salberg
Family Foundation
Ms. Sylvia Michelson
Dr. and Mrs. Albert T. Milauskas
Ms. Anne Miller
Neil R. Miller, MD
Mr. and Mrs. Rodney E. Milhes
Milton Schamach Foundation, Inc.
Miriamey Lodge K.S.B., Inc.
Monica and Hermen Greenberg
Foundation
Mrs. L. Franklin Moore, Jr.
Ms. Lucy G. Moorhead
Morris Schapiro and Family
Foundation, Inc.
Moser Family Philanthropic Fund
Mr. Alfred H. Moses
Mr. Alvin J. Myerberg*
Mr. Irvin D. Newgren*
Honorable and Mrs. Arthur L.
Nims III
Mrs. Agnes E. Nixon
Mr. and Mrs. Lawrence C.
Nussdorf
Mr. Ralph O'Connor
Odd Fellows and Rebekahs Visual
Research Foundation
Mr. and Mrs. Morton H. Offit
Mr. and Mrs. Ernest T. Oskin
Fernando C. Ottati, MD
Dr. and Mrs. Ray T. Oyakawa
PanOptica, Inc.
Ms. Rose Parapiglia
Mr. and Mrs. Dwark O. Parikh
Mr. Charles R. Parmele III
David Patton, MD
Major General and Mrs. John S.
Patton
Paul S. Bomberger, Jr. Foundation,
Inc.
John W. Payne, MD
Mr. and Mrs. Herbert L. Peck
Mr. Michael L. Peck
Mr. Paul L. Peck, Jr.
Jay S. Pepose, MD, PhD
Dr. and Mrs. George L. Perry
Mr. and Mrs. Robin Plushner
Dr. and Mrs. Irvin P. Pollack
Potomac Lions Club
Mr. Ronald E. Potter
Mr. and Mrs. Marc S. Pritchard
Bryan Propes, MD
Dr. George E. and Mary Benjamin
Pugh
Dr. and Mrs. Harry A. Quigley
R and Z. Sass Family Foundation
Mr. and Mrs. Stephen F. Raab
Ms. Doris K. Rabbitt*
Dr. and Mrs. Pradeep Y. Ramulu
Mr. and Mrs. Philip J. Rauch
Mrs. Mary Jane B. Read
P. Vijay Reddy, MD, PC
Mrs. Matllyn S. Reiner
Mr. Timothy N. Resler
Richard J. Moriarty Charitable
Fund
Mr. Peter Riddleberger
Mr. Richard K. Robbins
Robert H. Smith Family
Foundation
Alan L. Robin, MD
Mr. Brooks C. Robinson
Mrs. Maureen A. Robinson
Dr. and Mrs. Dean J. Rodman
Mr. and Mrs. Robert Rosenthal
The Rothschild Charitable
Foundation
Mr. Alfred R. Rubin
Mr. Michael J. Rubino
Ms. Jean S. Ruff
Mr. Philip Edward Ruppe and
Ms. Ann H. Bourtell
Mrs. Janet L. Ruth
Mr. John J. Ryan III
Mr. Murray D. Ryan*
Dr. and Mrs. Stephen J. Ryan, Jr.
Mr. and Mrs. Donald Sadler
Samuel and Margaret Mosher
Foundation
Mrs. Elaine L. Sargent
Mr. B. Francis Saut II
Mrs. Carolyn S. Schleger
Mr. Jack W. Schnoor
Mr. Arnold R. Schunick
Daniel M. Schwartz, MD
Miss Dorothy M. Scott
Mr. J. Thomas Scrivener
Dr. Hollis Seunarine
Mrs. Mary M. Nauquin Sharp
Rose L. Shure
Mr.* and Mrs.* Milton L. Shurr
Sierra Foundation, Inc.
Mr. and Mrs. Albert H. Small, Sr.
Mrs. Clarice R. Smith
Ms. Jean M. Smith*
Ms. Melissa G. Smith
Patricia W. Smith, MD, PA
Ronald E. Smith, MD
Dr. and Mrs. Alfred Sommer
Ms. Valery Soyfer
Mr. Andrew L. Spector
Mr. and Mrs. Phillip Spector
Dr. and Mrs. Charles H. Spragg
Dr. and Mrs. Walter J. Stark, Jr.
Mrs. Lina A. Steele
Mr. and Mrs. William R. Stewart
Mr. and Mrs. Bradley A. Stirm
Mr. Norman Strahl
Leon Strauss, MD, PhD
Strouse Family Fund
Subramanian Family Fund
John O. Susac, MD
Ms. Marie E. Svensson
Janet B. Svirsky, PhD
Mr. Daniel Syed
T. H. Chestermere, Ltd.
Mr. Everette R. Terrell, Jr.
Theodore H. Barth Foundation,
Inc.
Mr. and Mrs. Richard J. Thomas
Mrs. Barbara Thomas
Dr. and Mrs. John T. Thompson
Mr. and Mrs. W. Reid Thompson
Mr. Stephen M. Thorpe
Mr. and Mrs. William R. Tiefel
Mrs. Mary Donnell Tilghman
Mr. James E. Troutman
Mark O. M. Tso, MD
Jiang Tu, LAC., PhD
Mr. and Mrs. Albert W. Turner
Mr. and Mrs. Richard Tyson
Mr. and Mrs. Thomas E. Utz
Rohit Varma, MD, MPH
Mr. and Mrs. Antonio Vilar
W. M. Keck Foundation
Ms. Paula K. Wagner and Mr. Rick
Nicina
Mrs. Beverly A. Wagner
Mr. and Mrs. Bobby J. Wallace
Mr. and Mrs. David W. Wallace
Dr. and Mrs. Edward E. Wallach
Mr. C. D. Ward
Mrs. Barbara J. Warner
The Washington Post Company
Ms. Eunice L. Watkins*
Mr. Edward C. Watkins III
Hon. and Mrs. Thomas J. S.
Waxer, Sr.
Mr. and Mrs. William Waytana
Ms. Lorraine Weaver
Mr. Edward H. Welbourn III
Dr. and Mrs. Robert B. Welch
Mr. John B. Wheeler
Mrs. Gloria M. White and Mr.
David U. Gogol
William and Ella Owens Medical
Research Foundation
Ms. Gertrude J. Williams
Mrs. Carol R. Wills
Mr. and Mrs. Joseph M. Witcher
Ms. Virginia Woerner
Mr. and Mrs. Donald R. Wolfe
Ms. Marcelle E. Woll*
Mrs. Janet K. Wood
Mrs. Joyce Joann Wood
Mr. A. Thomas Young
Mr. William G. Zanoff
Marco A. E. Zarbin, MD
David S. Zee, MD
Mr. Stephen Zilliacus
Mr. and Mrs. Joseph C. Zuray

*deceased

Annual review

- **Strenght Endurance Will Power**

A solid financial future – it's a goal that you and Johns Hopkins share. In these challenging times, it is especially critical to plan for what lies ahead. You can help ensure that the people and institutions you care most about will remain strong in the future. All it takes is **Will Power**.

Please contact us for information about tax-wise giving and sample bequest language to benefit The Wilmer Eye Institute.

Kathryn A. Shelton
Johns Hopkins Office of Gift Planning
410-516-7954 or 800-548-1268
e-mail: kshelton1@jhu.edu
www.jhu.plannedgifts.org

- John O. Susac, MD
- Ms. Marie E. Svensson
- Janet B. Svirsky, PhD
- Mr. Daniel Syed
- T. H. Chestermere, Ltd.
- Mr. Everette R. Terrell, Jr.
- Theodore H. Barth Foundation, Inc.
- Mr. and Mrs. Richard J. Thomas
- Mrs. Barbara Thomas
- Dr. and Mrs. John T. Thompson
- Mr. and Mrs. W. Reid Thompson
- Mr. Stephen M. Thorpe
- Mr. and Mrs. William R. Tiefel
- Mrs. Mary Donnell Tilghman
- Mr. James E. Troutman
- Mark O. M. Tso, MD
- Jiang Tu, LAC., PhD
- Mr. and Mrs. Albert W. Turner
- Mr. and Mrs. Richard Tyson
- Mr. and Mrs. Thomas E. Utz
- Rohit Varma, MD, MPH
- Mr. and Mrs. Antonio Vilar
- W. M. Keck Foundation
- Ms. Paula K. Wagner and Mr. Rick Nicita
- Mrs. Beverly A. Wagner
- Mr. and Mrs. Bobby J. Wallace
- Mr. and Mrs. David W. Wallace
- Dr. and Mrs. Edward E. Wallach
- Mr. C. D. Ward
- Mrs. Barbara J. Warner
- The Washington Post Company
- Ms. Eunice L. Watkins*
- Mr. Edward C. Watkins III
- Hon. and Mrs. Thomas J. S. Waxer, Sr.
- Mr. and Mrs. William Waytana
- Ms. Lorraine Weaver
- Mr. Edward H. Welbourn III
- Dr. and Mrs. Robert B. Welch
- Mr. John B. Wheeler
- Mrs. Gloria M. White and Mr.
 David U. Gogol
- William and Ella Owens Medical
 Research Foundation
- Ms. Gertrude J. Williams
- Mrs. Carol R. Wills
- Mr. and Mrs. Joseph M. Witcher
- Ms. Virginia Woerner
- Mr. and Mrs. Donald R. Wolfe
- Ms. Marcelle E. Woll*
- Mrs. Janet K. Wood
- Mrs. Joyce Joann Wood
- Mr. A. Thomas Young
- Mr. William G. Zanoff
- Marco A. E. Zarbin, MD
- David S. Zee, MD
- Mr. Stephen Zilliacus
- Mr. and Mrs. Joseph C. Zuray

Faculty Feats
A sampling of FY10 honors for Wilmer physicians

Esen Karamursel Akpek, MD
- Appointed the associate director of Jerome L. Greene Sjogrens’ Center at Bayview Medical Center
- Appointed the director of Cornea and External Disease Fellowship at Wilmer Eye Institute
- Appointed editorial board member, Advanced Ocular Care
- Appointed editorial board member, Journal of European Medical Students Association
- Appointed editorial board member, Journal of Ocular Immunology and Inflammation
- Appointed member, Medical & Scientific Advisory Board, Tear Film & Ocular Surface Society
- Selected to be included in Best Doctors in America by Consumers’ Research Council of America

M. Valeria Canto-Soler, PhD
- Visiting professor, Waisman Center, University of Wisconsin
- Moderator of the session “Mechanisms of Retinal Development” during the annual meeting of the Association for Research in Vision and Ophthalmology

Diana V. Do, MD
- President’s Award, Maryland Society of Eye Physicians and Surgeons
- Program chair, Maryland Society of Eye Physicians and Surgeons 4th Annual Ophthalmology Convention
- William Evans Bruner, MD, Lectureship at Case Western University, Cleveland, Ohio
- Visiting professor at Kansas University EyeCon Lectures, and Albert Einstein University College of Medicine
- Visiting professor, “Advances in Retinal Therapy,” Medical University of Vienna, Austria
- Invited faculty at the 2009 EuRetina Winter meeting, Vienna, Austria; and 2010 Macula of Paris, France

Susan Bressler, MD
- Selected to serve as vice chair of Diabetes Clinical Research Network (DRCR.net), a network dedicated to improving treatment for diabetic eye disease and sponsored by the National Eye Institute. The network published results of a landmark trial on management of diabetic macular edema in June 2010
- Leading a new study assessing the ForeseeHome Device to improve monitoring of patients with Age-Related Macular Degeneration who are at high risk of advanced disease. Study is sponsored by the National Eye Institute and Notal Vision
- Selected to serve on Data and Safety Monitoring Board for the National Eye Institute-sponsored CATT study (assessing Lucentis vs. Avastin for neovascular AMD)
- Served as Retina Section head for the inaugural meeting of Controversies in Ophthalmology held in Prague

Charles Eberhart, MD, PhD
- Organizer and session chair: “Advances in Corneal and Conjunctival Pathology,” American Association of Ophthalmic Pathologists Companion Meeting at USCAP 2010, Washington, DC
- Elected an American Society for Clinical Investigation member, 2010

David S. Friedman, MD, MPH, PhD
- Named the Alfred Sommer Professor of Ophthalmology
- Selected as the Hong Leong Visiting Professor, Singapore
- Presented the Mohammed Aziz Lecture, Johns Hopkins
- Member of the American Academy of Ophthalmology Preferred Practice Pattern Committee for Glaucoma
- Worked with Helen Keller International to establish diabetic retinopathy telemedicine screening in Bangladesh and Indonesia
- Named to Best Doctors in America, 2010
Morton F. Goldberg, MD
- Honored by the University of Illinois College of Medicine in Chicago with an endowed Morton F. Goldberg, MD, annual lectureship as well as an endowed Morton F. Goldberg, MD, professorship

Judith E. Goldstein, OD
- Recipient of The Women’s Board of The Johns Hopkins Hospital Grant Award
- Recipient of the 2009 Envision Excellence through Collaboration Award

Boris Gramatikov, PhD
- Received the Hartwell Individual Biomedical Research Award for “Pediatric Vision Screening Instrument for Early Detection of Amblyopia (‘Lazy Eye’),” 2009

Michael Grant, MD
- ORBIS volunteer faculty, Surabaya, East Java, Indonesia
- International coordinator, Oculoplastics program, APAO/AAO Joint Meeting, Beijing, China
- Co-chairman, ACMF International Orbital Reconstruction Symposium, Baltimore

Lori L. Grover, OD
- Elected distinguished practitioner and member of the National Academies of Practice
- Completed term as national chair of the Vision Rehabilitation Section Executive Council of the American Optometric Association
- Appointed to the Advocacy Committee of the Association for Research in Vision and Ophthalmology (ARVO)
- Elected president of the Greater Baltimore Optometric Society of the Maryland Optometric Association

David L. Guyton, MD
- Received the Lifetime Achievement Award from the American Association for Pediatric Ophthalmology and Strabismus
- Named a Gold Fellow of the Association for Research in Vision and Ophthalmology

Justin Hanes, PhD
- Named to the Scientific Advisory Board for the drug delivery division of Genentech, Inc.
- Co-founded Kala Pharmaceuticals
- Keynote lecturer, Roche Meeting on Innovative New Technologies, September 2010
- Keynote lecturer, Brown Advisory, “NOW 10” meeting, May 2010

Henry D. Jampel, MD, MHS
- Keynote speaker, Wilmer Day of Learning, May 2010
- Appointed co-chair, Ophthalmic Technology Assessment Committee of the American Academy of Ophthalmology

Albert Jun, MD, PhD
- Earned funding for a National Institutes of Health grant to study cellular defects in Fuchs’ corneal dystrophy
- Guest editorial in the journal Ophthalmology commemorating the 100-year anniversary of the description of Fuchs’ corneal dystrophy
- Elected to the Annual Meeting Program Committee of the Association for Research in Vision and Ophthalmology
- Completed a new ophthalmology curriculum for the Johns Hopkins School of Medicine

Richard J. Kolker, MD
- Received the Harrell Pierce Wilmer Resident Teaching Award
- Received the Neil Miller Medical Student Teaching Award
Gerard Lutty, PhD

- Invited speaker at the Advanced Retinal Therapy Meeting, Vienna, Austria, on “Metabolism and Angiogenesis”
- Lectured in the Distinguished Lecture Series at Schepens Eye Research Institute, Harvard University, on “The Birth and Death of Choriocapillaris in AMD”
- Lectured in the Distinguished Lecturers in Visual Science Series at University of Buffalo on “Building a Blood Vessel the Old-Fashioned Way”

Robert W. Massof, PhD

- Received a Research to Prevent Blindness Senior Investigator Award

Shannath Merbs, MD

- Inaugural recipient of AFER/Pfizer/Ophthalmics/Carl Camras Translational Research Award for design and testing of a new surgical instrument to improve the outcome of surgery for blindness from trachoma
- Chair, ASOPRS Thesis Committee
- Volunteer faculty for ORBIS, Surabaya Indonesia

Peter J. McDonnell, MD

- Sigmund Schutz Lecture, New York University, March 2009
- Keynote speaker, Pan-American Research Day, Fort Lauderdale, Florida, May 2009
- Societa Oftalmologica Meridionale Academic Award, Reggio, Calabria, Italy, May 2009
- Delivered the DaNatal Lecture at the 2010 SEIOUS, Salvador, Brazil, March 2010
- Received the 2010 Distinguished Alumnus Award, June 2010, University of Southern California

Neil Miller, MD

- Delivered the Richard E. Hoover, MD, Lecture, Department of Ophthalmology, Greater Baltimore Medical Center, Baltimore
- Appointed section editor for Journal of Neuro-Ophthalmology
- Guest speaker at the National Eye Institute, the Pacific Coast Oto-Ophthalmological Society Meeting, the Florida Society of Ophthalmology Annual Meeting, the Nebraska Academy of Physicians and Surgeons Fall Meeting, the Israel Ophthalmology Society Annual Meeting, the New England Ophthalmology Society Annual Meeting, and the International Neuro-Ophthalmology Society Biennial Meeting

Quan Dong Nguyen, MD, MSc

- Visiting professor, Edward S. Harkness Eye Institute, Columbia University, New York; Kansas University EyeCon Lectures; and Albert Einstein University College of Medicine, New York
- National Institutes of Health R-24 Grant Award
- Visiting professor, “Advances in Retinal Therapy,” Medical University of Vienna, Austria
- Invited faculty at the 2009 Euretina Winter Meeting, Vienna, Austria; 2010 Macula of Paris, France; 2010 Mexican Uveitis Society, Mexico City; and 2010 Brazilian Retina Society, Sao Paulo
- Program organizer and session chair, 2010 World Ophthalmology Congress, Berlin, Germany

Harry Quigley, MD

- Secretariat Award for Distinguished Service, American Academy of Ophthalmology, 2009
- Gold Fellow Award, Association for Research in Vision and Ophthalmology, 2009
- Edward Jackson Lecture, American Academy of Ophthalmology, 2009
Pradeep Ramulu, MD, PhD
- Awarded K23 grant from NEI to study real world functional impairment in glaucoma
- Visiting professor, Aravind Eye Institute

Michael X. Repka, MD
- Chairman, Dermatologic and Ophthalmic Drugs Advisory Committee, Food and Drug Administration
- President, Maryland Society of Eye Physicians and Surgeons

Oliver D. Schein, MD, MPH, MBA
- Presented Charles Dyson Lecture, University of Ontario, London Health Sciences Centre
- Keynote speaker, Dry Eye Summit, Fort Lauderdale, Florida
- In collaboration with Dr. Jennifer Elisseeff, earned a major research award from the Department of Defense Deployment Related Medical Research Program: “Eye Protection and Treatment for Combat Healing (Biomaterials for Corneal Injury and Repair)”

Hendrik Scholl, MD, MA
- Received the Wynn-Gund Translational Research Acceleration Program Enhanced Research and Clinical Training Award from the National Neurovision Research Institute (NNRI) — Foundation Fighting Blindness (FFB) — “Structure-Function Correlation in Inherited Retinal Degenerations: Development of Surrogate Endpoints for Clinical Trials”
- Received the Macular Degeneration Research Award from American Health Assistance Foundation (AHAF) for a “Structure-Function Correlation in Macular Degeneration” study

Prem S. Subramanian, MD, PhD
- Received Achievement Award from the American Academy of Ophthalmology
- Selected to the Leadership Development Course of the AAO
- Appointed to Editorial Board, Journal of American Association of Pediatric Ophthalmology and Strabismus

Jennifer E. Thorne, MD, PhD
- Named director, Division of Ocular Immunology
- Visiting professor, The Proctor Foundation, University of California, San Francisco
- Appointed to steering committee for the North American AIDS Cohorts Collaboration on Research and Design (NA-ACCORD)

Stanley Vinores, PhD
- Silver Fellow in the ARVO Fellows Class of 2010
- Sponsorship Research Agreement with ImClone to investigate anti-VEGFR1 as a therapeutic agent for ocular disease
- Co-inventor on patent application filed for Parstatin peptides

Howard S. Ying, MD, PhD
- Awarded National Institutes of Health R01 Grant, “Ocular motor adaptation in health and disease”
- Visiting professorships at Johns Hopkins Applied Physics Laboratory, Massachusetts Eye and Ear Infirmary, and Washington University
- Visiting scientist at Laboratory for Sensorimotor Research at the National Eye Institute
- Invited lecturer at University of Minnesota

David S. Zee, MD
- Presented Guy Williams lecture, “EyeOscillations, Genetics and Ion Channels,” at the Cleveland Clinic, Fall 2009
- Pfizer Visiting Professor, University of Illinois, Peoria, Illinois, March 17-19, 2010
- Elected an ARVO Fellow, May 2010
Philanthropy Summary
Commitments include cash received and pledges made, life income gifts, grants, planned gifts, and bequests made during FY10.

By Use

<table>
<thead>
<tr>
<th></th>
<th>$ (Millions)</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Commitments</td>
<td>$19.4</td>
<td>100%</td>
</tr>
<tr>
<td>Current Programs</td>
<td>$8.6</td>
<td>44%</td>
</tr>
<tr>
<td>Endowment</td>
<td>$8.2</td>
<td>42%</td>
</tr>
<tr>
<td>Capital (Building)</td>
<td>$2.6</td>
<td>13%</td>
</tr>
</tbody>
</table>

By Transaction Type

<table>
<thead>
<tr>
<th></th>
<th>$ (Millions)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Commitments</td>
<td>$19.4</td>
<td>100%</td>
</tr>
<tr>
<td>Planned Gifts</td>
<td>$4.5</td>
<td>23%</td>
</tr>
<tr>
<td>New Grants</td>
<td>$3</td>
<td>15%</td>
</tr>
<tr>
<td>Gifts</td>
<td>$7.4</td>
<td>38%</td>
</tr>
<tr>
<td>Pledges</td>
<td>$4.5</td>
<td>23%</td>
</tr>
</tbody>
</table>
We’re in your neighborhood

HOSPITAL LOCATIONS
Wilmer Eye Institute at Johns Hopkins Hospital
Wilmer Eye Institute at Johns Hopkins Bayview Medical Center
Wilmer Eye Institute at Columbia

COMMUNITY LOCATIONS
Wilmer Eye Institute at Frederick
Wilmer Eye Institute at Green Spring Station
Wilmer Eye Institute at Odenton
Wilmer Eye Institute at White Marsh
Wilmer Eye Institute at Wyman Park Medical Center

Information & Referrals
410-955-5080
877-477-9519
www.wilmer.org