A Critical Mass of Minds

Wilmer’s newly opened Robert H. and Clarice Smith Building offers researchers exciting new opportunities for collaboration.
Dear Wilmer Friends and Family:

With its sun-filled atrium and expansive, open architecture, our new Robert H. and Clarice Smith Building is a wonderful place for collaboration. As our faculty move through the “research neighborhoods” that unfold across the building’s top five floors, they encounter colleagues they might never have regularly encountered before, when Wilmer’s research enterprise was spread out in a disjointed patchwork of labs and offices in six different buildings.

By bringing our scientists together, in an open environment with few walls and doors, we’ve unleashed the potential for synergy and collaboration. As you’ll see in “A Critical Mass of Minds” (p. 6), our researchers couldn’t be more excited about what this means for approaching old problems in new ways, and ultimately speeding the process of discovery. The new building also offers much needed new research space—60 percent more than before—which will allow us, at last, to add new faculty who are standouts in emerging fields of science such as nanotechnology and tissue engineering.

Of course, the opening of the Smith Building has also dramatically improved Wilmer’s clinical setting, allowing us to offer a more pleasant, patient-centered surgical experience. We now have dedicated parking for patients (just steps away from the entrance), a separate pediatric waiting room, and “stretcher chairs” that ease transition to and from surgery. With added space and a more efficient floor plan, we’ll be able to perform 50 percent more operations annually in the Maurice Bendann Surgical Pavilion.

Read more about our impressive new building (and the eight decades of achievement in ophthalmology that brought us to where we are today) in the building dedication program we’ve bound into this issue of Sightline.

My sincere best wishes,

Peter J. McDonnell, M.D.
William Holland Wilmer Professor and Director
Every patient is an opportunity to teach; every patient is an opportunity to learn,” Saras Ramanathan tells the residents who rotate through her operating room during their time at the Wilmer Eye Institute, home to one of the premiere ophthalmology training programs in the nation.

Like all Wilmer faculty members, Ramanathan knows the importance of teaching, training, and mentoring the 21 residents who come through the Wilmer Ophthalmology Residency Program annually. A member of the program’s core faculty since 2003 and a two-time winner of the L. Harrell Pierce Resident Teaching Award, the assistant professor works with residents during all three years of their Wilmer training. “I tell them, ‘You are never going to get rid of me,’” she jokes.

But Ramanathan’s commitment to resident training doesn’t stop there. She has also dedicated herself to researching how to improve the way the specialty trains the eye surgeons of tomorrow, by objectively quantifying and measuring the effectiveness of residency training at Wilmer.

Consider Ramanathan’s recent study in which she compared complication rates in cataract surgeries performed by second- and third-year Wilmer residents. Conventional thought is that the more times a training surgeon performs a procedure, the more skilled he or she becomes and fewer complications are likely to occur. However, residency programs must balance training with quality of care and patient safety and as a result surgical rotations at Wilmer don’t occur until after year two, after residents have gained sufficient experience. But her study confirmed that Wilmer’s residents are well prepared to learn surgery even after only one year of training. When she examined medical records of 691 cases performed by residents under her supervision, she found little difference in complication rates in phacoemulsification surgeries done by residents with one year of training vs. two.

Her conclusion: Surgical training in residents could start even earlier with appropriate pre-operative study, patient selection, and effective guidance in the OR.

“The learning tends to be exponential,” says Ramanathan, who for the first time in July brought a first-year resident into the OR with her to complete a particular step during cataract surgery under her tutelage. The more cases residents perform, she notes, the more highly skilled they are when they finish training. “We want them to leave here being excellent surgeons.”

Recognizing the importance of providing residents with the tools they need to be successful, Ramanathan has collaborated with a team in Alison Okamura’s Haptics Lab in the Johns Hopkins mechanical engineering department to develop a virtual reality simulator that’s aimed at allowing residents to practice the hand movements used in cataract surgery. Because the simulator provides tactile feedback, surgeons-in-training can learn not just how the procedure looks, but how it feels. “The traditional method of teaching is to have students work on animal eyes, but those tissues often don’t mimic the human tissue very well,” she explains. What’s more, the simulator allows residents to practice their skills many times before first performing the procedure on an actual patient. “This can make a huge impact in patient safety because it allows us to help measure competency of our residents,” she says.

So far Ramanathan has developed a rudimentary simulator that mimics the most difficult step in cataract surgery, but she needs additional funding to do more. “To really make this work we need to hire a computer scientist to develop the necessary programs to stimulate the entire surgery,” she says.

In the meantime, she remains committed to training future generations of ophthalmologists and helping them learn the best way to provide quality care to patients. “There’s amazing growth and development that occurs over the three years our residents are here,” Ramanathan says. “It’s such a pleasure to know that I had even the smallest role in that development.”

—Maria Blackburn
These days, it’s not uncommon to find engineers in the operating rooms at the Wilmer Eye Institute and eye surgeons in the engineering labs on the Hopkins Homewood campus. Collaboration between Wilmer and the Johns Hopkins University School of Engineering makes perfect sense to vitreoretinal surgeon Peter Gehlbach.

The way he sees it, clinicians encounter seemingly unsolvable problems each day. Engineers have technology that could hold the answers. By pooling their collective expertise, Wilmer researchers and Hopkins’ biomedical engineers are already pushing the boundaries of what’s possible.

Collaborating to Create an Artificial Cornea

Several years ago, Wilmer ophthalmologist Oliver Schein became interested in the concept of rebuilding corneas damaged by disease or injury. While corneal transplants have proven successful for many people (more than 40,000 are performed annually in the United States), there are limitations to current techniques—particularly for people with chronic inflammatory conditions, and those in developing nations where access to donor tissue is extremely limited.

Could an answer lie in developing an artificial cornea, Schein wondered? At the time, there wasn’t anyone at Wilmer doing that kind of work. “One day I searched in a Hopkins database for key terms to find collaborators,” says Schein. “Cornea” plus “reconstruction” didn’t get any hits, so he expanded his search to “collagen.” He got one result: a page about biomedical engineer Jennifer Elisseeff at the Tissue Engineering Laboratory at Hopkins’ Homewood campus. Elisseeff was working on artificial collagen for reconstruction of knee cartilage.

“Forty-eight hours later I was sitting in her office trying to convince her why the eye was more interesting and important than the knee,” says Schein with a laugh.

Elisseeff agreed to take on the project, despite a hefty learning curve. “Some aspects are similar between eye and knee tissue, so we could easily transition some of our cell-based materials to the corneal cells,” she says, “but getting the expertise and working in this new area took a little time.”

Collaborating closely with Schein and his colleagues at Wilmer was key. “In any of our projects, we have to work with the end-user,” says Elisseeff. “So the project really started with Oliver and that clinical input … having that physician support is invaluable.”

Their research focuses on two areas: an adhesive to close wounds in lieu of surgery, and collagen-based synthetic materials that could create an artificial substitute for the cornea. “One of our main themes is biomaterials-directed regeneration,” explains Elisseeff. “We use the biomaterials to enhance and improve the natural repair capacity.”

Schein and Elisseeff began with small amounts of funding for their research. Sources included an Alcon award, a Maryland Technology Development Corporation (TEDCO) grant, and patient donations. Then Schein discovered a military program that supports research advances related to treatment of battlefield injuries, including those of the eye. “Since ocular injuries are unfortunately very common in military settings, there was
an appealing link between the things we're doing and what the military wanted,” he says.

In their proposal to the Department of Defense, they outlined their objective to create materials for two different applications. The first is an ocular bandage for use on the battlefield. Dust, explosions, and shrapnel commonly cause severe injury to soldiers’ eyes, taking them out of action and causing severe pain and abrasions. Treatment is necessary to avoid infection, but soldiers in the field often do not have access to good medical care. Schein and Elissieff are working to develop a disposable foil pack that contains a membrane, possibly self-dissolving, that is easy to apply by a medic.

“IT's like a large contact lens that is placed over the cornea and contains some combination of antibiotic and anti-inflammatory medication—something that could stabilize the eye and prevent secondary infection and make it heal better until a soldier can get to a hospital,” explains Schein.

The proposal also addresses the development of synthetic tissues to treat more serious wounds like penetration of the eye. Attached with stitches or adhesive, the biomaterial would eventually become part of the host tissue.

Their proposal was accepted (less than 3 percent of applicants received funding), and the team (which includes colleagues from Wilmer and biomedical engineering, as well as researchers from Hopkins’ Applied Physics Laboratory) has already begun work. Schein is optimistic about what lies ahead: “By joining new technologies and materials through this multidisciplinary approach,” he says, “we may create an artificial cornea that could one day alter the course of treatment for corneal blindness around the world.”

Clinical Needs, Technological Solutions

“When you can communicate across two campuses, there’s a great deal of potential for the right answer and the right question to get paired,” says Peter Gehlbach.

He has teamed up with a diverse group from Wilmer and Hopkins’ Center for Computer-Integrated Surgical Systems and Technology (CISST), including Wilmer’s James Handa and center director Russ Taylor, as well as lead engineers Greg Hager and Jin Kang. The team is collaborating on a joint proposal funded by the National Institutes of Health that seeks to integrate and translate new and emerging robotic, imaging, and computer-assistance technologies into the broad discipline of microsurgery.

The proposal focuses on vitreoretinal surgery as the model system. Because surgeries of the retina and vitreous are incredibly delicate, all the techniques are microsurgical and occur under high-powered microscopes, explains Gehlbach. The hope is that technology can improve the current limits and risks of surgical procedures.

The first stage is improving the light source and ergonomic problems associated with the microscope, says Handa. “The No. 1 injury for vitreoretinal surgeons is back problems. We're looking at projecting images on a high-definition plasma monitor instead of looking through an operating microscope.”

In addition to imaging technology, the researchers aim to develop “smart instruments”—tools that use “force sensing” to keep surgeons from cutting too deeply and can measure oxygen levels in the eye and the depth of tissue down to micro levels. Another component of the program is surgeon-initiated robotic assistance that eliminates unintended movement and reduces injury.

It’s inevitable that their research will have applications to other microsurgical disciplines, says Gehlbach. “That’s why this project is a launching pad for what really is an emerging field of development—computer-assisted surgery, advanced imaging incorporated into actual surgical approaches, as well as robotic technologies.”

“These really are quantum leaps forward,” he says. “We’re using so-called ‘disruptive technology’ that really changes the way we do things.”

Meeting weekly with such a talented group of people is energizing and exciting, say Gehlbach and Handa. “This is a case where 1+1 = 10, in my opinion,” says Handa. “It’s been a wonderful collaboration.” They are already seeing the potential for big steps forward. In fact, the end product is not so far from finding its way into the operating room. “Within five years we plan to have a system that will make the average surgeon excellent and the excellent surgeon unbelievable,” says Handa. “There’s a lot of hard work ahead, but there’s also a big group of motivated people.”

—By Abigail Green
A Venture Capitalist for Glaucoma

This gift provides a safety net for some of our brightest young investigators and allows them to take bigger risks. —Dr. Harry Quigley

From the very beginning, Harry Quigley impressed William Thomas Forrester. The two met about 15 years ago when Forrester, then in his mid-40s, needed trabeculectomy surgery to treat the pigmentedary glaucoma he had been diagnosed with at age 26. The eye drops and laser surgery treatments he had used for 20 years were no longer effective at lowering his eye pressure, which eventually would damage his left eye’s optic nerve. When he needed to prevent damage to the optic nerve in his left eye, he asked 10 specialists at top hospitals across the country who they would go to for the surgery. Quigley’s name came up again and again.

Forrester’s surgery, which Quigley performed in 1994, stabilized deterioration in his eye due to glaucoma. But the physician’s surgical skill wasn’t the only thing about him that made an impact on the now retired financial executive. During his twice yearly visits to the Wilmer Eye Institute from his home in Sarasota, FL, Forrester saw how generous with his time Quigley was with patients and how rigorous he was in his training of young physicians. “He’s a brilliant guy with a great bedside manner,” says Forrester, 60. “That’s rare.” But what impressed him the most was how Quigley responded when Forrester asked him about the latest developments in glaucoma research. “Dr. Quigley’s face would just light up when he’d talk about glaucoma treatments that were on the horizon,” he says. “I thought, ‘this is a guy with a passion for what he does.’”

So Forrester decided to help support Quigley’s passion for research. “It was an easy choice to me to give the money
to Dr. Quigley,” explains Forrester, who goes by Tom. “He is an unusual combination of a great physician and a great scientist who can employ these funds in ways that we’d have the best chance of having a good outcome. I picked a really smart guy and said, ‘Do your best.’”

Forrester’s generous gift couldn’t have come at a more perfect time, Quigley says. The gift allowed glaucoma researchers to do initial legwork on new projects to see if they could be submitted for grant funding. “When you want something to be funded by the National Institutes of Health, you almost have to prove you can do it before they’ll actually give you the money to do it,” explains the researcher, who has made many major contributions to the diagnosis and treatment of glaucoma during his 32 years at Wilmer. “Tom’s money allowed us to take a number of new ideas that either had not been funded or that we would have loved to submit for grant consideration—but we didn’t have time to write grants for—and provide support for the pilot work on four studies.”

Two of these projects were successful enough to land federal grants and prompt further investigation, Quigley says.

In the first project, Michael V. Boland is exploring how electronic patient records could improve a doctor’s thinking and decision making regarding patient’s glaucoma diagnosis. In making such a diagnosis, an ophthalmologist must look at a complex set of information and make decisions on a patient’s risks of going blind. Just like programs such as TurboTax can prompt users to do their taxes correctly, an electronic patient record could better inform a physician about a patient’s possible outcomes by providing the collected wisdom from the nation’s top glaucoma specialists at his or her fingertips. “Everybody thinks it’s a great idea to have computerized patient records, but nobody is actually doing the hard work to produce one that helps the doctor do a quality job better,” Quigley says. “That’s what Dr. Boland is doing, thanks to Tom’s gift.”

In the second project, Quigley and his team are using a complex analysis of genomics data to determine what genes in the eye make one susceptible to injuries caused by glaucoma. “Using induced glaucoma in a mouse model, we believe we are going to find that one or more of the genes that make people less susceptible to injury will be genes in the connective tissue of the sclera, the white part of your eye,” he says. In response, therapies could be developed to strengthen this tissue in those more susceptible. “My hope is that within five years we could have a therapy for glaucoma that doesn’t rely on lowering eye pressure,” he says.

Forrester’s gift will continue to provide similar support to new research projects over the next three years, Quigley says, and this support is critical. “We’re as successful at getting grants as any eye institute in the world, but we have tons of investigators getting those grants and every one of them can have a dry spot. This gift, and others like it, provides a safety net for some of our brightest young investigators and allows them to take bigger risks.”

Forrester couldn’t be happier. “I think it’s just fabulous that Dr. Quigley decided to use my gift as seed money for new research,” he says. “That’s like being a venture capitalist for glaucoma.” In this case, however, the reward is somewhat different, he adds. “Unlike a conventional investment, the payoff is the hope that you can in some way improve the lives of others.”

—Maria Blackburn
With 60 percent more research space, and a spacious communal layout for labs, Wilmer’s newly opened Robert H. and Clarice Smith Building offers researchers exciting new opportunities for collaboration.

Photos by Keith Weller
Months before the October 16 dedication of the new Robert H. and Clarice Smith Building, stacks of lab equipment, computers, and file boxes started appearing from across the Johns Hopkins medical campus. The date for relocating to bigger, better surroundings had been set—and Wilmer researchers were ready to move.

For Shannath Merbs, packing up her lab was fairly simple since she’d been without her own research space for the last four years. “There was no other place for me at Wilmer, so my technician and I had to work out of Dr. Donald Zack’s lab,” she explains, illustrating the critical need for the new building and the resulting 60 percent increase in Wilmer’s dedicated research space.

Merbs and her one technician shared a lab bench and close quarters in Zack’s lab, often moving to the hallway to talk so they wouldn’t disrupt other researchers. She had grant funding to expand her research of epigenetic gene regulation in the retina, but there was no room to grow—until now. Merbs plans to hire two additional lab technicians before year’s end. And she’s eager to collaborate and share “eureka moments” with the other six research teams on the third floor. “Almost everybody on our floor is looking at either retinal development, retinal disease, or glaucoma,” she says, “from strategies to screen thousands of potentially therapeutic molecules to very basic research about genes, all of which might be very important to people with retinal disease, such as macular degeneration, or glaucoma.”

Like Merbs, Jerry Lutty doesn’t miss his previous lab address in the Woods Research Building, which dates to the 1960s. The cramped quarters and cinderblock walls did little to spark collaboration or inspiration. “When we were separated in different buildings, we often didn’t know what our colleagues were doing,” he says. “This communal existence will create a more collaborative environment. Now that we’re all together and seeing each other every day, we end up working as a group—and that makes us all more productive.”

With progress comes adjustment, Lutty points out. “The challenge, of course, is that we had been existing in our own little cubicles, and now we’re in this generic lab with five or more investigators in one giant space.”

“At first glance, it is a bit daunting,” Merbs admits. “If you stand at one end of the lab and look through a set of shelves to the other end, you get this sense of infinity.” In a space so large and open, you have to be talking to colleagues, she says—and that’s a good thing. “There isn’t one person who’s informed on every single technology, but someone who has an expertise in one area can apply that to many problems,” Merbs explains. “It’s also helpful to be around a lot of smart people, to get a fresh perspective on your research.”

Located on the third floor with Merbs is Elia Duh, whose research targets the molecular mechanisms underlying diabetic retinopathy and age-related macular degeneration. After working in CRB II, one of the campus’ Cancer Research Buildings, where he had limited contact with other ophthalmology researchers, he welcomes a team-focused environment to move research forward, faster. “As you get to know each other’s research better and better, that’s when ideas emerge,” he says. “Having a critical mass of minds depends on everyone being close together.”

The “critical mass of minds” in the new building is an incentive for scientists considering a move to Wilmer. The new building’s five research floors are intentionally flexible in design to accommodate more or less staff and diverse projects. Valeria Canto-Soler is recruiting for at least two additional positions in her third-floor lab, where she focuses on the study of retinal development and degeneration. “It’s not only the room but the environment you can offer,” she explains. “Interacting with other investigators, having access to equipment and techniques—the environment I can offer has changed dramatically,” she says. “Something you had to encourage before now happens naturally. Answers will come faster. Our chances of success, of solving the problems, are much higher.”

For Canto-Soler, packing up her old lab was a bittersweet exercise in looking forward—and back. She came to Wilmer in 2002 to join the research team of Ruben Adler, a renowned retinal scientist and beloved faculty member who died unexpectedly five years later. Canto-Soler was asked to head Adler’s lab and still considers it a privilege to carry on his work. “I think the most impressive thing for me during the packing process was to see passing through my eyes and hands Dr. Adler’s work of more than 25 years,” she reflects. “I wanted to absorb all that wisdom and knowledge that seemed to be ‘floating’ everywhere I looked. It made me also think of the importance of the science being done at Wilmer, and how honored I am to be part of this.”

—By Marlene England
Dedication to a Cure

On October 16, the 80th anniversary of the dedication of the original Wilmer Building, more than 400 donors, faculty, staff and friends joined together to celebrate the opening of the new Robert H. and Clarice Smith Building and Maurice Bendann Surgical Pavilion. Please see insert for more details on this historic day for Wilmer.

PHOTOS BY BOB STOCKFIELD

T. Boone Pickens and the nursing staff

Anne and Lance Bendann

Clarice Smith, Stacy Liss, Robert H. Smith, Michael Liss, Michelle Smith

Martha Head, Walter Stark, M.D., John Feagin, M.D. on a tour of the surgical facilities.

Bud Meyerhoff, Phyllis Meyerhoff, Walter Stark, M.D.

Adam Gross, Alfred Sommer, M.D., M.H.S., Sally MacConnell, Robert H. Smith

William Holland Wilmer II, Lucy Parrish Wilmer, William Holland Wilmer III, Marina Utgoff Braswell, Phil Braswell

Stephen Raab, Mariellen Raab, Robert H. Smith
Walter Stark, M.D., Edward Miller, M.D., Clarice Smith, Morton Goldberg, M.D., Robert H. Smith, Sandy Forsythe, Richard Forsythe, Joanne Rosen, T. Boone Pickens, Ronald Peterson, Peter McDonnell, M.D., Lloyd Minor, M.D.

Alan Potter, Louise Potter, Bill Tiefel, Norma Tiefel, Lloyd Minor, M.D., Bud Brylawski, John Safer

Kathryn Scott, John Safer, Joy Safer

Sandy Forsythe, Rick Forsythe, Joanne Rosen

Elena Bueno Lopez, M.D., David Pyott, Karen Westermoe, M.D., William May, M.D.
To end the evening, a surprise check was presented to Morton Goldberg, M.D., in recognition of capping off the $3 million Director’s Discovery Fund campaign. The check was presented by long time supporter, Howard Brownstein.
Construction Completion Party

On Wednesday, June 10, in the T. Boone Pickens Atrium of the Robert H. and Clarice Smith Building, donors (Mr. and Mrs. Robert H. Smith, Mr. and Mrs. Willard Hackerman, and Mr. and Mrs. Rick Forsythe) gathered with members of the architectural, design, and construction team to celebrate the end of construction on time (24 months) and on budget ($105 million).

Residents Celebration

The Wilmer Residents Celebration on June 10 honored the graduating residents of the Class of 2009. About 100 people were in attendance in the Robert H. and Clarice Smith Building, T. Boone Pickens Atrium. Dr. Morton Goldberg addressed the crowd and gave advice to the graduating residents. All of the residents were given a certificate and a memento with which to remember Wilmer.
A solid financial future – it’s a goal that you and Johns Hopkins share. In these challenging times, it is especially critical to plan for what lies ahead. You can help ensure that the people and institutions you care most about will remain strong in the future. All it takes is Will Power.

Please contact us for information about tax-wise giving and sample bequest language to benefit The Wilmer Eye Institute.

Kathryn A. Shelton
Johns Hopkins Office of Gift Planning
410-516-7954 or 800-548-1268
e-mail: kshelton1@jhu.edu
www.jhu.plannedgifts.org

Above: Morton F. Goldberg, M.D., Stephen J. Ryan, M.D., Alice Wilkinson, Charles P. Wilkinson, M.D.

Below: Cristina Quigley, Harry Quigley, Norma Trefel.
Faculty Feats
A sampling of FY09 honors for Wilmer physicians.

Valeria Canto-Soler, Ph.D.
- Promoted to Assistant Professor of Ophthalmology
- Named to “Who’s Who in America,” 2010 Edition
- Keynote Speaker for the Mid Atlantic Convention of the American Council for the Blind and the Foundation Fighting Blindness Baltimore Chapter: “Stem Cells and the treatment of Retinal Degeneration”

Elliott H. Myrowitz, O.D., M.P.H.
- Appointed to the Optometry Times Editorial Advisory Board
- Created the Wilmer-Maryland Optometric Association meeting “Evidence Based Eye Care”

Josephine O. Owoeye, O.D., M.P.H.
- Received Master of Public Health degree from the Johns Hopkins Bloomberg School of Public Health

David Guyton, M.D.
The Zanvyl Krieger Professor
- Presented The Gissur Petursson, M.D., Lecture, University of Arkansas – “Strabismus Complications from Local Anesthetics”
- Presented The Doheny Memorial Lecture, Doheny Eye Institute, University of Southern California - “Changes in Strabismus over Time”

Jennifer E. Thorne, M.D., Ph.D.
- Selected into “Top Doctors in America 2009”
- Received American Academy of Ophthalmology’s Achievement Award

Stan Vinores, Ph.D.
- Keynote Speaker at the Argentine Chapter of the Association for Research in Vision and Ophthalmology (Investigación en Visión y Oftalmología), Cordoba, Argentina.

Bob Massof, Ph.D.
- Received Alcon Research Institute Award
- Received 2009 Lighthouse International Pisart Vision Award

Susan Bressler, M.D.
The Julia G. Levy, Ph.D. Professor
- Received Gertrude D. Pyron Award for Lifetime Achievement of Outstanding Research, American Society of Retina Specialists (ASRS)
- Received Goodwin M. Breinin, MD Visiting Professorship, New York University Medical Center, New York, NY
- Received Senior Honor Award, The American Society of Retina Specialists

Michael Grant, M.D., Ph.D.
- Elected to the American Academy of Ophthalmology Council, representing the American Society of Ocular Trauma
- Course Director, AO Fundamentals of Orbital Reconstruction
- International Coordinator, Oculoplastics Section, 2009 APAO/AAO Joint Meeting, Indonesia
- Appointed to Editorial Board, Aesthetic Surgery Journal

Charles Eberhart, M.D., Ph.D.
- Invited Speaker, 2009 ARVO Ocular Oncology Course, Ft. Lauderdale, FL
Walter J. Stark, M.D.

*The Boone Pickens Professor*
- Received Lifetime Achievement Award from the American Academy of Ophthalmology
- Guest of honor at the Thorny Issues in Ophthalmology Conference, in Portland, OR

Jerry Lutty, Ph.D.

*The G. Edward and G. Britton Durell Professor*
- Received a Research to Prevent Blindness Senior Scientific Investigator Award
- Named inaugural ARVO Fellow, Silver medal, 2009

James Handa, M.D.

*The Robert Bond Welch M.D. Professor*
- Named inaugural ARVO Fellow, silver medal, 2009
- Received American Academy of Ophthalmology Achievement award, 2009
- Named to “Best Doctors in America 2009”
- Editorial Board member, Investigative Ophthalmology Visual Science

Albert Jun, M.D., Ph.D.

- Received Dolly Green Special Scholar Award 2009 from Research to Prevent Blindness

Emily Gower, Ph.D.

- Received Wilmer Professors Research Grant

Pradeep Ramulu, M.D., Ph.D.

- Received 2009 Dennis W. Jahnigen Career Development Award

Neil Bressler, M.D.

*The James P. Gills Professor*
- Re-elected to Chair NIH-sponsored Diabetic Retinopathy Clinical Research Network from 2009-2013
- Cited by U.S. House of Representatives Resolution 366 and U.S. Senate Resolution 209 in recognition of the 40th Anniversary of the National Eye Institute of the National Institutes of Health
- Appointed Chair of the Office of Funded Programs Advisory Board by the School of Medicine's Office of Continuing Medical Education
- Appointed Chair of the FDA’s Ophthalmic Devices Panel
- Re-appointed Chair of the National Eye Institute's Data and Safety Monitoring Committee for oversight of ophthalmic clinical trials undertaken by the intramural program of the National Eye Institute at its Bethesda, MD campus
- Appointed as Councillor representative and Executive Committee member of the Macula Society to the American Academy of Ophthalmology's Council
- Awarded 2008 Secretariat Award from the American Academy of Ophthalmology
- Received Gertrude D. Pyron Award for Lifetime Achievement of Outstanding Research, American Society of Retina Specialists (ASRS)

Peter J. McDonnell, M.D.

*Director and The William Holland Wilmer Professor*
- Presented the Van Buskirk Lecture, Legacy Health System and Hospitals, Portland, Oregon
- Presented the Kayes Lecture in Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
- Presented the Harvey Thorpe Lecture, University of Pittsburgh, Pittsburgh, PA
- Presented the Sigmund Schutz Lecture, New York University, New York, NY
- Keynote Speaker, Pan-American Research Day, Fort Lauderdale, FL
- Received Societa Oftalmologica Meridionale Academic Award, Reggio, Calabria, Italy
Michael Boland, M.D.
- Received ARVO/Alcon Early Career Clinician-Scientist Research Award
- The Frank B. Walsh Professor

Neil Miller, M.D.
- Received Lifetime Achievement Award from the American Academy of Ophthalmology
- Presented the 39th Jules Stein Lecture at UCLA Medical Center
- Presented the 2009 Sri. V. Venugopal Endowment Lecture at Sankara Nethralaya Institute in Chennai, India
- Presented the 2009 Francis Heed Adler Lecture at the Scheie Eye Institute in Philadelphia, Pennsylvania
- Presented the 2009 Lois A. Young, M.D. Memorial Lecture at Howard University School of Medicine in Washington, D.C.

James P. Dunn, M.D.
- The Eugene de Juan, M.D. Professor
- Co-editor with Dr. Paul Langer of Basic Techniques in Ophthalmic Surgery, published by the American Academy of Ophthalmology

Michael X. Repka, M.D.
- Appointed Member, Dermatologic and Ophthalmic Drugs Advisory Committee, Food and Drug Administration
- Joined National Eye Health Education Program Committee, National Eye Institute
- Associate Editor, Journal of the American Association of Pediatric Ophthalmology and Strabismus
- Secretary for Federal Affairs, American Academy of Ophthalmology
- Vice-President, Maryland Society for Eye Physicians and Surgeons
- Presented the Queen’s Ophthalmology Lecture, Queen’s University, Kingston, Ontario, Canada
- Presented the Robert Letson Lectureship, University of Minnesota; Minneapolis, Minnesota

Harry Quigley, M.D.
- The A. Edward Maumenee Professor
- Received the Leydecker–Harms lecture in Würzburg, Germany
- Presented the Saul Sugar Lecture in Detroit

Sheila West, Ph.D., Pharm.D.
- The Akef EL-Maghraby Professor
- Appointed to the Technical Expert Committee of the International Trachoma Initiative
- Chaired the National Eye Institute Strategic Planning Panel for Ophthalmic Epidemiology
- Inducted into the ARVO Fellows
- Recipient of a Research to Prevent Blindness award to fund sabbatical to the London School of Hygiene and Tropical Medicine

Morton Goldberg, M.D.
- The Joseph E. Green Professor
- Presented the Cunha-Vaz Lectureship, Portugal
- Co-authored (with Homayoun Tabandeh, M.D.,) Ophthalmoscopy in Systemic Disease, Thieme Publishing Company, 2009

Barbara S. Hawkins, Ph.D.
- Appointed Deputy Editor, Clinical Trials: The Journal of the Society for Clinical Trials

Rahul Khurana, M.D.
- Received the Ronald G. Michaels Fellowship Award: Top Surgical Vitreoretinal Fellow
- Retina Society AAO Advocacy Ambassador

Prem Subramanian, M.D., Ph.D.
- Awarded grant from North American Neuro-Ophthalmology Society to study double vision and how it affects quality of life in adult patients
- Invited as Royal College of Surgeons Lecturer, London, Ontario
Henry Jampel, M.D., M.H.S.

*The Independent Order of Odd Fellows Professor*

- Visiting Professor of Ophthalmology, Wills Eye Hospital, Philadelphia

Elia Duh, M.D.

- Editor of book titled *Diabetic Retinopathy*, in the Contemporary Diabetes Book Series, published by Humana Press/Springer Science + Business Media

Diana V. Do, M.D.

- Received 2009 American Academy of Ophthalmology Achievement Award
- Scientific Program Director of the 2009 Meeting of the Maryland Society of Eye Physicians and Surgeons
- Guest of Honor at the 2009 Florida Retina Symposium, Sarasota
- Invited Faculty at the 2009 French American Ophthalmology Otolaryngology Symposium

Quan Dong Nguyen, M.D., M.Sc.

- Received Physician Scientist Award from the Research to Prevent Blindness Foundation
- Received Coulter Foundation Award for Innovative Research
- Visiting Professor and Guest of Honor, The 10th Annual Research Day, Federal University of São Paulo, Department of Ophthalmology, Vision Institute
- Visiting Professor and Guest of Honor, George Washington University Department of Ophthalmology Alumni Day
- Program Director of the 2009 French American Ophthalmology Otolaryngology Symposium

Irene C. Kuo, M.D.

- Selected into America’s “Top Ophthalmologists”
- Received 2008 Patients’ Choice Award
- Invited speaker at Women in Ophthalmology Annual Meeting

Ashley Behrens, M.D.

- Cataract, Cornea, and Refractive Surgery Chair, Curso Andino de Ciencias Oftalmologicas; Medellin, Colombia
- International Guest Speaker: National Meeting of the Ophthalmic Society of Honduras; Tela, Honduras
- Editorial Board Member Cornea and Cataract Surgery Ophthalmology Times
- Associate Editor, ROV

David S. Friedman, M.D., M.H.S., Ph.D.

- Invited Faculty at the World Glaucoma Congress
- Invited Lecturer at the Southeast Asian Glaucoma Interest Group Meeting in Seoul, Korea
- Selected as one of the Best Talks at the American Glaucoma Society
- Invited Faculty at the Royal Australian New Zealand College of Ophthalmology annual meeting, Melbourne, Australia
- Appointed the American Glaucoma Society representative to the American Academy of Ophthalmology Preferred Practice Pattern Committee
- Elected member of the Glaucoma Research Society
- Appointed to the Singapore Eye Research Institute International Advisory Council
- Appointed Co-Chair of the Scholarly Concentration Community Health and Public Policy Program at Johns Hopkins Medical School
- Re-appointed as Senior Ophthalmologist to Helen Keller International

**WR Green House Staff Teaching Award**

Fasika A. Woreta, M.D.

**Neil R. Miller Faculty Teaching Award**

Albert S. Jun, M.D., Ph.D.

**Allan D. Jensen Part-Time Faculty Teaching Award**

David B. Glasser, M.D.

**Teaching Awards Chosen by the Medical Students**

- Faculty Resident Teaching Award: Alex Christoff, B.S., C.O., C.O.T.
- Faculty Resident Advocate: Neil Miller, M.D.
- Faculty Resident Surgical Teaching Award: Saras Ramanathan, M.D.
- Fellow Teaching Award: Akriti Sodhi, M.D.
Our Work to Cure Blindness: Our Donors

The scientists and staff of the Wilmer Eye Institute at Johns Hopkins gratefully acknowledge our partners in philanthropy listed here. The generosity of these friends supports a tradition of collaboration and far-reaching investigation as, together, we pursue the complex challenges of eye diseases. While our space here is limited, our thankfulness is not. Although gifts of any amount are gratefully received, only gifts and pledge payments totaling more than $100 in the fiscal year ending June 30, 2009, could be listed in this report. If any donor was accidently missed, please contact the development office at 410-955-2020.
Philanthropy Summary

Commitments include cash received and pledges made, life income gifts, grants, planned gifts, and bequests made during FY09.

By Use

<table>
<thead>
<tr>
<th></th>
<th>$ (Millions)</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Commitments</td>
<td>$17.0</td>
<td>100%</td>
</tr>
<tr>
<td>Current Programs</td>
<td>$9.5</td>
<td>55.9%</td>
</tr>
<tr>
<td>Endowment</td>
<td>$4.0</td>
<td>23.5%</td>
</tr>
<tr>
<td>Capital (Building)</td>
<td>$3.5</td>
<td>20.6%</td>
</tr>
</tbody>
</table>

By Transaction Type

<table>
<thead>
<tr>
<th></th>
<th>$ (Millions)</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Commitments</td>
<td>$17.0</td>
<td>100%</td>
</tr>
<tr>
<td>Planned Gifts</td>
<td>$6.3</td>
<td>55.5%</td>
</tr>
<tr>
<td>New Grants</td>
<td>$5.2</td>
<td>24.6%</td>
</tr>
<tr>
<td>Gifts</td>
<td>$3.0</td>
<td>12.5%</td>
</tr>
<tr>
<td>Pledges</td>
<td>$5.5</td>
<td>7.4%</td>
</tr>
</tbody>
</table>
SightLine is published twice a year by the Wilmer Eye Institute at Johns Hopkins.

Managing Editor: Elizabeth Bower
Editor: Sue De Pasquale
Contributing Writers: Maria Blackburn, Marlene England, Abigail Green
Designer: Abby Ferretti

© 2009 The Johns Hopkins University and The Johns Hopkins Health System Corporation

To add/remove your name from the mailing list, please send your name and address to:
The Wilmer Eye Institute
Sightline Subscription
600 N. Wolfe Street, Wilmer 112
Baltimore, MD 21287-9015
wildev@jhmi.edu
410-955-2020
410-955-0866 (fax)

The mission of the Wilmer Eye Institute is to use and develop the finest scientific evidence to promote improved ophthalmic care and the reduction of visual disability in a collaborative environment that combines compassionate patient care, innovative research, and the training of future leaders in ophthalmology and visual sciences.

We’re in your neighborhood

HOSPITALS
Wilmer Eye Institute at Johns Hopkins
Wilmer Eye Institute at Johns Hopkins Bayview Medical Center

OUTPATIENT CENTERS
Wilmer Eye Institute at Columbia
Wilmer Eye Institute at Frederick
Wilmer Eye Institute at Green Spring Station
Wilmer Eye Institute at Odenton
Wilmer Eye Institute at White Marsh

Information & Referrals
410-955-5080
410-955-0866 (fax)
410-955-2020
wildev@jhmi.edu

Toll-Free Directions
877-477-9519
www.wilmer.org