William Agnew Laboratory

  • The Agnew Laboratory examines the structure, mechanism and regulation of ion channels that mediate the action potential in nerve and muscle, as well as intracellular calcium concentrations. Much of our work has centered on voltage-activated sodium channels responsible for the inward currents of the action potential. These studies encompass biochemical, molecular biological and biophysical studies of Na channel structure, gating and conductance mechanisms, the stages of channel biosynthesis and assembly, and mechanisms linked to channel neuromodulation. In recent molecular cloning and expression studies, we have characterized mutations in the human muscle sodium channel that appear to underlie certain inherited myopathies. New studies being pursued in our group also address the questions of structure, receptor properties, and biophysical behavior of intracellular calcium release channels activated by inositol-1,4,5-triphosphate. These channels are expressed at extremely high levels in selected cells of the central nervous system, and may play a role in modulating neuronal excitability.

    Research Areas: central nervous system, neuronal excitability, biophysiology, biochemistry, sodium channels, ion channels, molecular biology

    Principal Investigator

    William Agnew, Ph.D.

    Department

    Physiology