Daniel H. O'Connor, Ph.D., M.A.

Headshot of Daniel H. O'Connor
  • Professor of Neuroscience

Research Interests

Neuropsychiatric illness; Neural circuits; Circuit dysfunction; Sensory perception ...read more

Background

Dr. Daniel O’Connor is an associate professor of neuroscience at the Johns Hopkins University School of Medicine.

His research focuses on neural circuits for touch perception and his lab is working to reveal the neural circuit foundations of sensory perception and provide a framework to understand how circuit dysfunction causes mental and behavioral aspects of neuropsychiatric illness. 

Dr. O’Connor earned his Ph.D. in molecular biology and neuroscience from Princeton University. He was a research specialist at the Janelia Farm Research Campus of the Howard Hughes Medical Institute before joining the Department of Neuroscience and the Brain Science Institute at Johns Hopkins in 2012.

...read more

Titles

  • Professor of Neuroscience

Departments / Divisions

Centers & Institutes

Education

Degrees

  • B.A.; Hampshire College (Massachusetts) (1999)
  • M.A.; Princeton University (New Jersey) (2004)
  • Ph.D.; Princeton University (New Jersey) (2006)

Research & Publications

Research Summary

Dr. O’Connor applies advanced methods of behavioral analysis, electrophysiology, two-photon calcium imaging using genetically encoded sensors, and molecular gain- and loss-of-function manipulations to study the function of the cerebral cortex circuits. He investigates how the cerebral cortex circuits produce sensory perception and the ability to pay attention and how dysfunction in these circuits manifests as neurological disease.

Dr. O’Connor and his team use mouse models to study how brain dynamics affect a person’s sensory experience of the world. They train mice to perform simple perceptual tasks. By using quantitative behavior, optogenetic and chemical-genetic gain- and loss-of-function perturbations, in vivo two-photon imaging, and electrophysiology, they assemble a description of the relationship between neural circuit function and perception. They work in the mouse tactile system to capitalize on an accessible mammalian circuit with a precise mapping between the sensory periphery and multiple brain areas.

By unraveling circuits for touch perception in the mouse, they expect to gain key insights into principles of mammalian brain function, and to provide a framework to understand how circuit dysfunction ultimately causes mental and behavioral aspects of neuropsychiatric illness.

Selected Publications

Procedures for behavioral experiments in head-fixed mice. Guo ZV, Hires SA, Li N, O'Connor DH, Komiyama T, Ophir E, Huber D, Bonardi C, Morandell K, Gutnisky D, Peron S, Xu NL, Cox J, Svoboda K. PLoS One. 2014 Feb 10;9(2):e88678. doi: 10.1371/journal.pone.0088678. eCollection 2014.

Automated tracking of whiskers in videos of head fixed rodents. Clack NG, O'Connor DH, Huber D, Petreanu L, Hires A, Peron S, Svoboda K, Myers EW. PLoS Comput Biol. 2012;8(7):e1002591. doi: 10.1371/journal.pcbi.1002591. Epub 2012 Jul 5.

Vibrissa-based object localization in head-fixed mice. O'Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K. J Neurosci. 2010 Feb 3;30(5):1947-67. doi: 10.1523/JNEUROSCI.3762-09.2010.

Reverse engineering the mouse brain. O'Connor DH, Huber D, Svoboda K. Nature. 2009 Oct 15;461(7266):923-9. doi: 10.1038/nature08539. Review.

Neural coding during active somatosensation revealed using illusory touch. O'Connor DH, Hires SA, Guo ZV, Li N, Yu J, Sun QQ, Huber D, Svoboda K. Nat Neurosci. 2013 Jul;16(7):958-65. doi: 10.1038/nn.3419. Epub 2013 Jun 2.

Academic Affiliations & Courses

Graduate Program Affiliation

Neuroscience Graduate Program

Biochemistry, Cellular and Molecular Biology Graduate Program

Is this you? Edit Profile
back to top button