Skip Navigation
Find a Doctor


Photo of Dr. Gregg Semenza

Gregg L. Semenza, M.D., Ph.D.

Director, Vascular Program, Institute for Cell Engineering
Professor of Pediatrics



  • Director, Vascular Program, Institute for Cell Engineering
  • Professor of Pediatrics
  • Professor of Biological Chemistry
  • Professor of Medicine
  • Professor of Oncology
  • Professor of Radiation Oncology and Molecular Radiation Sciences

Centers & Institutes


Contact for Research Inquiries

Phone: 443-287-5619

Research Interests

Protection of the heart against ischemia-reperfusion injury; Role of HIF-1 in cancer; Gene and stem cell therapy for ischemic cardiovascular disease; Molecular mechanisms of oxygen homeostasis; Genetic syndromes due to mutations in genes encoding transcription factors


Dr. Gregg L. Semenza is a professor of pediatrics, radiation oncology and molecular radiation sciences, biological chemistry, medicine, and oncology at the Johns Hopkins University School of Medicine. Dr. Semenza is the C. Michael Armstrong Professor of Pediatrics and serves as the director of the vascular program at the Institute for Cell Engineering.

One of today’s preeminent researchers on the molecular mechanisms of oxygen regulation, Dr. Semenza has led the field in uncovering how cells adapt to changing oxygen levels. He is best known for his ground-breaking discovery of the HIF-1 (hypoxia-inducible factor 1) protein, which controls genes in response to changes in oxygen availability. The finding has far-reaching implications in understanding and treating low-oxygen health conditions such as coronary artery disease and tumor growth.

He received his A.B. from Harvard University. He earned his M.D. and Ph.D. from the University of Pennsylvania, completed his residency in pediatrics at Duke University Medical Center and performed postdoctoral research in medical genetics at Johns Hopkins. Dr. Semenza joined the Johns Hopkins faculty in 1990.

Dr. Semenza’s research interests include the molecular mechanisms of oxygen homeostasis; gene and stem cell therapy for ischemic cardiovascular disease; the role of HIF-1 in cancer; and protection of the heart against ischemia-reperfusion injury. He has authored more than 250 research articles and several book chapters, and has been cited in research more than 30,000 times.

He is a founding fellow of the American College of Medical Genetics and was elected to the Association of American Physicians and the National Academy of Sciences in 2008. He serves on the editorial board of several journals, including Molecular and Cellular Biology and Cancer Research, and is editor-in-chief of the Journal of Molecular Medicine.

In 2012, Dr. Semenza was elected to the Institute of Medicine. He has been recognized with numerous other awards, including the Lefoulon-Delalande Grand Prize from the Institut de France, the Gairdner Award, the Stanley J. Korsmeyer Award, the E. Mead Johnson Award for Research in Pediatrics, the Jean and Nicholas Leone Award from the Children''s Brain Tumor Foundation, the Established Investigator Award from the American Heart Association, and the Lucille P. Markey Scholar Award in Biomedical Science. more

Featured Video

Gregg Semenza of Johns Hopkins Medicine on Science

Gregg Semenza, M.D., Ph.D., of the Johns Hopkins McKusick-Nathans Institute of Genetic Medicine on the excitement and unpredictability of being a scientist.

More Videos

    Additional Information

  • Education +

    Additional Training

    Ph.D., University of Pennsylvania, 1984

    M.D., University of Pennsylvania, 1984

    A.B., Harvard University, 1978

  • Research & Publications +

    Research Summary

    The Semenza lab studies molecular mechanisms underlying angiogenesis and vascular remodeling in ischemic cardiovascular disease. A major aspect of this process is the production of multiple angiogenic cytokines and growth factors in response to hypoxia/ischemia, which is mediated by the transcription factor HIF-1 (hypoxia-inducible factor 1). HIF-1 mediates vascular and progenitor cell responses to angiogenic signals, but these processes are impaired by aging and diabetes. The team currently is studying the use of gene and stem cell therapy in mouse models of critical limb ischemia and cutaneous burn wounds.

    HIF-1 plays important roles in critical aspects of cancer biology, including tumor angiogenesis, regulation of glucose and energy metabolism, invasion, and metastasis. The team is taking several approaches to inhibit HIF-1 activity, including RNA interference, dominant negative constructs, and small molecule inhibitors. A major focus of their current cancer research is using animal, cell-based, molecular, and biophysical approaches to investigate the role of HIF-1 in vascular and lymphatic metastasis of human breast cancer.

    HIF-1 also is required for ischemic preconditioning, short episodes of ischemia and reperfusion that protect the heart against a subsequent prolonged ischemic insult. The team currently is exploring the cellular and molecular mechanisms underlying ischemic preconditioning using mice in which HIF-1 activity has been knocked out in specific cell types within the heart.

    The team now is using mass spectroscopy techniques to identify proteins that interact with the HIF-1 subunit. By employing this taking proteomics-based approach, they have identified novel regulators of HIF-1 transcriptional activity as well as direct regulation of the DNA replication machinery by HIF-1.


    Dr. Semenza’s lab is currently investigating:

    1. Molecular mechanisms of oxygen homeostasis. They have cloned and characterized hypoxia-inducible factor 1 (HIF-1), a basic helix-loop-helix transcription factor. HIF-1 expression increases exponentially as cellular O2 concentration declines. HIF-1 activates transcription of genes that are essential for adaptive responses to hypoxia, such as glycolysis, erythropoiesis, angiogenesis, and vascular remodeling. They are presently investigating the role of HIF-1 in the pathophysiology of cancer, cerebral and myocardial ischemia, chronic lung disease, and diabetes.
    2. Gene and stem cell therapy for ischemic cardiovascular disease. They are performing preclinical studies to investigate the use of adenoviral vectors encoding a constitutively active form of the HIF-1 subunit to stimulate vascularization of ischemic tissue. They are also utilizing bone marrow-derived angiogenic cells and adipose-derived mesenchymal stem – cells to stimulate vascularization and tissue regeneration in preclinical models of peripheral arterial disease.
    3. Role of HIF-1 in cancer. They are investigating the effects of altered HIF-1 activity on tumor growth, metabolism, and vascularization in preclinical models. These studies are providing proof-of-principle that inhibition of HIF-1 activity represents a novel strategy of cancer therapy. They have identified several drugs that potently inhibit HIF-1 and block the growth and vascularization of human tumor xenografts in nude mice.
    4. Protection of the heart against ischemia-reperfusion injury. They have demonstrated in preclinical models that recombinant human erythropoietin induces dramatic acute protection against cell death in hearts subjected to ischemia and reperfusion via activation of the phosphatidylinositol-3-kinase signal-transduction pathway. They have shown that HIF-1 is required for ischemic preconditioning.

    Lab Website: Gregg Semenza Lab

    Clinical Trials:

    HIF-1 Regulated Endothelial Progenitor Cell (EPC) Recruitment in Burn Wound Healing

    Selected Publications View all on PubMed

    Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. "Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells." Proc Natl Acad Sci U S A. 2014 Dec 1. pii: 201421438. [Epub ahead of print]

    Hu H, Takano N, Xiang L, Gilkes DM, Luo W, Semenza GL. "Hypoxia-inducible factors enhance glutamate signaling in cancer cells." Oncotarget. 2014 Oct 15;5(19):8853-68.

    Chapiro J, Sur S, Savic LJ, Ganapathy-Kanniappan S, Reyes J, Duran R, Thiruganasambandam SC, Moats CR, Lin M, Luo W, Tran PT, Herman JM, Semenza GL, Ewald AJ, Vogelstein B, Geschwind JF. "Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer." Clin Cancer Res. 2014 Oct 17. [Epub ahead of print]

    Huang D, Li T, Li X, Zhang L, Sun L, He X, Zhong X, Jia D, Song L, Semenza GL, Gao P, Zhang H. "HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression." Cell Rep. 2014 Sep 25;8(6):1930-42. doi: 10.1016/j.celrep.2014.08.028. Epub 2014 Sep 18.

    Lorenzo FR, Huff C, Myllymäki M, Olenchock B, Swierczek S, Tashi T, Gordeuk V, Wuren T, Ri-Li G, McClain DA, Khan TM, Koul PA, Guchhait P, Salama ME, Xing J, Semenza GL, Liberzon E, Wilson A, Simonson TS, Jorde LB, Kaelin WG Jr, Koivunen P, Prchal JT. "A genetic mechanism for Tibetan high-altitude adaptation." Nat Genet. 2014 Sep;46(9):951-6. doi: 10.1038/ng.3067. Epub 2014 Aug 17.

  • Academic Affiliations & Courses +
  • Activities & Honors +


    • Alpha Omega Alpha Honor Medical Society, 1981
    • Lucille P. Markey Scholar Award in Biomedical Science, Markey Trust, 1989
    • Member, Society for Pediatric Research, 1991
    • Established Investigator Award, American Heart Association, 1994
    • Member, American Society for Clinical Investigation, 1995
    • Jean and Nicholas Leone Award, Children''s Brain Tumor Foundation, 1999
    • E. Mead Johnson Award for Research in Pediatrics, Society for Pediatric Research, 2000
    • Member, National Academy of Sciences USA, 2008
    • Member, Association of American Physicians, 2008
    • Canada Gairdner Award, 2010
    • Elected to the Institute of Medicine, 2012
    • Lefoulon-Delalande Grand Prize, Institut de France, 2012
    • Research Professor, American Cancer Society, 2012 - 2016
    • Stanley J. Korsmeyer Award, American Society for Clinical Investigation, 2012
  • Videos & Media +


    Gregg Semenza of Johns Hopkins Medicine on HIF 1

    Gregg Semenza, M.D., Ph.D., of the Johns Hopkins McKusick-Nathans Institute of Genetic Medicine on hypoxia inducible factor.

    The Vascular Biology Program at Johns Hopkins' Institute for Cell Engineering

    Researcher Gregg Semenza introduces the Vascular Biology Program, where scientists trace cells as they move through the body and study the relationship between low-oxygen conditions, blood vessel growth, and cancer.

    Recent News Articles & Media Coverage

Is This You? Edit Profile

© The Johns Hopkins University, The Johns Hopkins Hospital, and Johns Hopkins Health System. All rights reserved.