Skip Navigation
Search Menu
Find an Expert

 


Solange P. Brown, M.D., Ph.D.

Photo of Dr. Solange P. Brown, M.D., Ph.D.

Assistant Professor of Neuroscience

Research Interests: ALS; Functional organization of local circuits of the neocortex

Background

Dr. Solange P. Brown is an assistant professor of neuroscience at the Johns Hopkins University School of Medicine, and she serves as an investigator in the Robert Packard Center for ALS Research at Johns Hopkins.

Her research examines the functional organization of local circuits of the neocortex. She uses mouse models to examine role of particular neurons, located below the cerebral cortex, which are abnormally distributed in schizophrenia. Other studies examine the excitatory and inhibitory neurons of the motor cortex, and their patterns of connectivity, to determine whether functional changes in these circuits represent early events in the development of ALS.

Dr. Brown has authored or co-authored numerous peer-reviewed publications and has presented her work at conferences around the world. In 2013, she was awarded a research grant by the Brain and Behavior Research Foundation (formerly known the National Alliance for Research on Schizophrenia and Depression).

...read more

Titles

  • Assistant Professor of Neuroscience

Departments / Divisions

Education

Degrees

  • A.B., Princeton University (New Jersey) (1990)
  • M.D., Harvard Medical School - Boston (Massachusetts) (2001)
  • Ph.D., Harvard University (Massachusetts) (2001)

Research & Publications

Research Summary

Dr. Brown’s research examines the functional organization of local circuits of the neocortex. She was recently awarded a grant to study the inhibitory cortical circuits in presymptomatic ALS. Her research examines the excitatory and inhibitory neurons of the motor cortex, and their patterns of connectivity, to determine whether functional changes in these circuits represent early events in the development of ALS.

The goal of this research is to identify primary events in the disease process that can suggest new preventative strategies and therapeutic targets in ALS. Furthermore, combining this work with the studies of lower motor neurons will give a fuller picture of why motor neurons are particularly vulnerable in ALS.

Lab

The neocortex represents a massive interconnected network of neurons that generates perception and action. Indeed, most synaptic inputs onto neocortical neurons come from other neocortical neurons. Dr. Brown’s laboratory examines how these circuits integrate incoming information and generate the cortical outputs that govern perception, thought and action.

The lab’s strategy is to combine physiological approaches with anatomical and genetic techniques for identifying cell populations and pathways to define the synaptic interactions among different classes of cortical neurons and to understand how long-range feedforward and feedback inputs are integrated within these circuits. By identifying the synaptic partners of functionally identified output neurons of the cortex and characterizing the dynamic properties of their synaptic connections, the lab can begin to understand the computations taking place within the cortex. The long-term goal is to understand how cortical circuits give rise to cortical activity and ultimately generate perception and behavior.

Lab Website: Brown Lab

Selected Publications

Arroyo S, Bennett C, Aziz D, Brown SP, Hestrin S. (2012). "Prolonged disynaptic inhibition in the cortex mediated by slow, non-α7 nicotinic excitation of a specific subset of cortical interneurons." Journal of Neuroscience. 32:3859-3864.

Brown SP, Hestrin S. (2009). "Cell-type identity: A key to unlocking the function of neocortical circuits." Current Opinion in Neurobiology. 19:415-421.

Brown SP, Hestrin S. (2009). "Intracortical circuits of pyramidal neurons reflect their long-range axonal targets." Nature.457:1133-1136.

Brown SP, Safo P, Regehr WG. (2004). "Endocannabinoids inhibit transmission at granule cell to Purkinje cell synapses by modulating three types of presynaptic calcium channels." Journal of Neuroscience. 24:5623-5631.

Brown SP, Brenowitz SD, Regehr WG. (2003). "Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature Neuroscience. 10:1048-1057.

Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH. (2002). "The diversity of ganglion cells in a mammalian retina." Journal of Neuroscience. 22:3831-3843.

Brown SP, Masland RH. (2001). "Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells." Nature Neuroscience. 4:44-51.

Brown SP, He S, Masland RH. (2000). "Receptive field microstructure and dendritic geometry of retinal ganglion cells." Neuron. 27:371-383.

Brown SP, Masland RH. (1999). "Costratitification of a population of bipolar cells with the direction-selective circuitry of the rabbit retina." Journal of Comparative Neurology. 408:97-106.

Academic Affiliations & Courses

Graduate Program Affiliation

Neuroscience Graduate Program

Is this you? Edit Profile