Skip Navigation
Print This Page
Share this page: More

Josh Lauring, M.D., Ph.D.

lauringAssistant Professor of Oncology

Dr. Lauring and his colleagues are working to hone in on the genetic changes that drive cancer growth. Finding these “driver” mutations is the first step toward identifying therapeutic targets for drug development, ultimately improving outcomes for patients with breast cancer.

Beyond identifying genetic mutations responsible for the development and spread of breast cancer, Dr. Lauring’s laboratory is actually creating a way to model a common and particularly complex type of genetic change that occurs in cancer, known as chromosomal amplification.

“We have succeeded in actually being able to create these amplifications in human cancer cell lines in the lab. If we can make them amplify the regions we want, the idea is that we could figure out the drivers [of certain forms of breast cancer],” Dr. Lauring explains.

In the twenty years that Dr. Lauring has been at Hopkins in research and patient care, he has seen incredible progress. Two decades ago, the benefit of chemotherapy had only recently been established for breast cancer. Now, clinicians treat certain forms of breast cancer with drugs to specifically target a given cancer’s genetic makeup.

Dr. Lauring points to HER2-positive breast cancer as an excellent example of a type of cancer for which a particular drug, Herceptin, has been found effective in both the cancer’s early stages as well as when it has metastasized. “Taking one of the [originally] worst prognostic groups, now we almost hope to find HER-2 on a pathology report because we’ve got so many drugs we can use against that target. Even in the metastatic setting, we’re much more hopeful about extending life,” he says.

Dr. Lauring acknowledges that the genetic complexity of cancer poses challenges to future drug development and treatment. The relationship between a mutation in a cancer and the response or resistance to targeted therapies is still poorly understood. Dr. Lauring is using cell line models to investigate this relationship and inform the use of gene mutations to select patients for targeted therapy.

“It is going to take a lot of effort by many investigators to reap the benefits of our new understanding of cancer genetics. But clearly, you can see that the field as a whole is moving along. There are a lot of people chipping away at it,” he says.


Read Our Blogs
Cancer Matters: timely topics
Our Cancer: for caregivers

Traveling for care?

blue suitcase

Whether crossing the country or the globe, we make it easy to access world-class care at Johns Hopkins.

Maryland 410-955-5222
U.S. 410-955-5222
International +1-410-614-6424



© The Johns Hopkins University, The Johns Hopkins Hospital, and Johns Hopkins Health System. All rights reserved.

Privacy Policy and Disclaimer