Critical Review of Medical Literature

Irina Burd, MD, PhD
Maternal Fetal Medicine
Johns Hopkins University
Is the study valid?

- Research question
- Population
- Intervention
- Analysis
What is the research question?

- Is there a well stated hypothesis?
- Does it include a clinically meaningful and relevant outcome?
- What is the end point?
 - Real
 - Surrogate end point = biomarker that is intended to substitute for a clinical end point
 - Usually used when outcome is rare, long time to observe the outcome, difficult to measure outcome, rapid dissemination of new treatment such as Phase II and III trials
Is the study valid?

- Research question
- Population
- Intervention
- Analysis
What is the study sample?

- Population → sample
- FLOW CHART/Figure 1 available and clear
- Table 1 is available to describe the sample
- Is sample representative of source population?
- Is sample/population representative of population in general
- Is inclusion and exclusion criteria well stated?
- ULTIMATELY, “CAN I USE THIS STUDY AND APPLY TO MY POPULATION?”
Is the study valid?

- Research question
- Population
- Intervention
- Analysis
Intervention
What kind of study is this?

• Case series
• Case control
• Cohort
• Randomized control study
Observational Study Designs: Case Control vs Cohort

Exposure

Disease

Can't use RR, can only use OR because researcher sets the prevalence within the study. Good for rare diseases. In rare diseases, OR approximates RR. In non-rare diseases, the direction of OR and RR are the same, but the actual number obtained for OR and RR are different. You CANNOT obtain a RR for this. It makes no sense to.

Exposure

Disease

RR and OR are both relevant for this. This is sometimes used to test out a new intervention/treatment.

Exposure

Disease

RR and OR are both relevant for retrospective cohorts.

KEY

Retrospective Cohort

Investigator/Researcher begins their research. When the researcher enters the scene.

- Present
- Absent

What we are seeking: the information we are trying to obtain; what we do not know; our question.
Is the study valid?

- Research question
- Population
- Intervention
- Analysis
Analysis

• Is there a right analysis for the data available
 – Power
 – Multiple comparisons
Is power analysis for the comparison of groups necessary and is it done?

• Power analysis
 – Beta, the Type II error rate, must be kept low
 – Power which is equal to 1 - beta, must be kept correspondingly high
 – Ideally, power should be at least 0.80 to detect a reasonable departure from the null hypothesis.
Results

<table>
<thead>
<tr>
<th>Univariate analysis</th>
<th>Frequency tables (usually, Table 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bivariate</td>
<td>2 by 2 tables (Sensitivity, Specificity, PPV, NPV)</td>
</tr>
<tr>
<td>Time to event</td>
<td>Kaplan Meier analysis</td>
</tr>
<tr>
<td>Multivariate</td>
<td>Depends on type of data:</td>
</tr>
<tr>
<td></td>
<td>Binary – Logistic regression</td>
</tr>
<tr>
<td></td>
<td>Continuous - Linear regression/analysis of variance</td>
</tr>
<tr>
<td></td>
<td>Time to event: Cox proportional hazards models</td>
</tr>
</tbody>
</table>
Calculation of effect size

• Relative risk
 – Estimates the magnitude of association between exposure and disease in exposed relative to unexposed
• Odds ratio
 – Ratio of odds of exposure among cases to odds of exposure among controls
• When to use one versus the other?
Relative risk (RR)

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>No disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>No exposure</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

\[
RR = \frac{\text{Risk of disease in exposed}}{\text{Risk of incidence of disease in unexposed}} = \frac{a}{a+b} / \frac{c}{c+d}
\]

- \(RR = 1 \) There is no association between exposure and disease state
- \(RR > 1 \) There is an increased risk of disease in exposed
- \(RR < 1 \) There is a decreased risk of disease in exposed
Odds ratio

<table>
<thead>
<tr>
<th></th>
<th>Disease</th>
<th>No disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk factor present</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Risk factor absent</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

\[
\text{OR} = \frac{ad}{bc}
\]

- OR=1 The events are equally likely in 2 groups
- OR>1 Event is more likely in one group
- OR<1 Event is less likely in one group
How large is the treatment effect

• Risk without therapy
 – Baseline risk X
• Risk with therapy Y
• Absolute risk reduction = $X - Y$
• Relative risk = Y/X
• Relative risk reduction = $[(X - Y)/X]/100$
BIAS

- **What is bias?**
- **Are different biases considered?**
 - **Selection bias**, including:
 - Sampling bias is systematic error due to a non-random sample of a population, causing some members of the population to be less likely to be included than others, resulting in a biased sample
 - Time interval/length time bias
 - Analyzing the lengths of intervals by selecting intervals that occupy randomly chosen points in time or space, a process that favors longer intervals
 - Attrition bias is a kind of selection bias caused by attrition (loss of participants), discounting trial subjects/tests that did not run to completion. It includes dropout, non-response, withdrawal and protocol deviators. Therefore, looking at the proper follow up is important
 - **Lead-time bias**
 - is the bias that occurs when two tests for a disease are compared, and one test (the new, experimental one) diagnoses the disease earlier, but there is no effect on the outcome of the disease-- it may appear that the test prolonged survival, when in fact it only resulted in earlier diagnosis when compared to traditional methods
 - **Observer bias**
 - Researcher unconsciously influences the participants of an experiment. It is a significant threat to a study's internal validity and is therefore typically controlled by using a double-blind experimental design
 - **Recall bias**
 - In surveys
Is it a diagnostic testing or a screening question?
Key Concept

• Sensitivity
 – The proportion of people who truly have a designated disorder who are so identified by the test.
 – Sensitive tests have few false negatives.
 – When a test with a high Sensitivity is Negative, it effectively rules out the diagnosis of disease: SnNout.
Key Concept

• Specificity
 – The proportion of people who are truly free of a designated disorder who are so identified by the test.
 – Specific tests have few false positives.
 – When a test is highly Specific, a Positive result can rule in the diagnosis: SpPin.
Key Concepts

– Negative predictive value
 • The probability that the disease is not present given a negative test

– Positive predictive value
 • The probability that the disease is present given a positive test
Key Concept

• Likelihood Ratio

 – Relative likelihood that a given test would be expected in a patient with (as opposed to one without) a disorder of interest.

 \[
 LR = \frac{\text{probability (\%)} \text{ of a test result in patients WITH disease}}{\text{probability (\%)} \text{ of the test result in patients WITHOUT disease}}
 \]
How Do I Use the LR?
Importance

• What likelihood ratios were associated with the range of possible test results?
 – How much will different levels of the diagnostic test raise or lower the pretest probability of disease?
What likelihood ratios were associated with the range of possible test results?

<table>
<thead>
<tr>
<th>Scan Results</th>
<th>Present</th>
<th></th>
<th>Absent</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Proportion</td>
<td>Likelihood Number</td>
<td>Proportion</td>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>High probability</td>
<td>102</td>
<td>102/251 = 0.406</td>
<td>14</td>
<td>14/630 = 0.022</td>
<td>18.3</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>105</td>
<td>105/251 = 0.418</td>
<td>217</td>
<td>217/630 = 0.344</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low probability</td>
<td>39</td>
<td>39/251 = 0.155</td>
<td>273</td>
<td>273/630 = 0.433</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Normal/near normal</td>
<td>5</td>
<td>5/251 = 0.020</td>
<td>126</td>
<td>126/630 = 0.200</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>251</td>
<td></td>
<td>630</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Importance

Comparison of the Results of a Diagnostic Test With the Results of Reference Standard Using a 2 × 2 Table

<table>
<thead>
<tr>
<th>Test Results</th>
<th>Disease Present</th>
<th>Disease Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test positive</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>Test negative</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

Sensitivity (Sens) = \[\frac{TP}{TP + FN} \]

Specificity (Spec) = \[\frac{TN}{FP + TN} \]

Likelihood ratio for positive test (LR+) = \[\frac{Sens}{1 - Spec} = \frac{True \ positive \ rate}{False \ positive \ rate} = \frac{TP}{(TP + FN)} \]

Likelihood ratio for negative test (LR–) = \[\frac{1 - Sens}{Spec} = \frac{False \ negative \ rate}{True \ negative \ rate} = \frac{FN}{(TP + FN)} \]

Reference Standard
Is it a study on prognosis of disease?
Key concepts

• Prognosis
 – Possible outcomes of a disease and the frequency with which they can be expected to occur

• Survival curve
 – A curve that starts at 100% of the study population and shows the population still surviving (or free of disease) at successful times for as long as the information is available
Key concept

• Hazard ratio (time to an event rather than an event itself)
 – A hazard is the instantaneous risk of an event at a given point
 – hazard ratio can be an estimate of relative risk

• Interpreting hazard ratios
 – HR<1 is protective
 – HR>1 is risk factor

• In survival analysis, HR is the effect of one variable on the hazard or risk of an event
Key concept

• Cox Hazard model
 – Estimate of the treatment effect on survival after adjustment has been made for other variables
 – It allows for an estimation of the hazard or a risk of death (or another event of interest), given the patient’s prognostic variables
Is it a treatment question?
Key concepts

– Relative risk reduction
 • Ratio of risk in exposed subjects divided by the risk in unexposed subjects

– Number needed to treat
 • The number of patients who need to be treated over a specific period of time to prevent one bad outcome
When looking at results

• Consider how precise are the estimates
 – how wide are the confidence intervals
Applicability

• Will the reproducibility of the test result and its interpretation be satisfactory in my clinical setting?
 – Does the test yield the same result when reapplied by the same observer (intraobserver variability)?
 – Do different observers agree about the test result (interobserver variability)?
Applicability

• Are the results applicable to the patients in my practice?
 – Does the test perform differently (different LRs) for different severities of disease?
 – Does the test perform differently for populations with different mixes of competing conditions?
Applicability

• Will the reproducibility of the test result and its interpretation be satisfactory in my clinical setting?
 – Difference between validity and reliability
Themes in the Medical Literature

• How do we use the medical literature?
 – Browsing
 – Problem Solving
 – Background and Foreground Questions
Clinical Questions

- Clinical Population -> Study Population
- Intervention/Outcomes -> Methods
- Results -> Clinical Population
Population

– What barriers exist to going from a clinical population to a study population?
– How can we ensure that the study population represents the true population of interest?
– Did intervention and control groups start with the same prognosis?
– What were the inclusion / exclusion criteria?
– Where did recruitment occur?
Diagnostic Test

- Does the sample of patients represent the full spectrum of patients with and without the diagnosis of interest?
- Did participating patients present a diagnostic dilemma?
 - Were subjects drawn from a group in which it is not known whether the condition of interest is present or absent?
- Does pre-test probability fall between test and treatment thresholds?

Copyright © American Medical Association. All rights reserved.
Prognosis Study

- Is the cohort representative of a defined group or population?
 - Referral bias, failure to clearly define study patients
 - Must report implicit filters passed before entering the study. Describe inclusion/exclusion criteria.
- Were the patients sufficiently homogenous with respect to prognostic risk?
 - Patients should be at similar point in disease process.
Other Considerations

• Qualitative Study
 – Were participants relevant to the research question?
 – Was participant selection well reasoned?
 – Did selection criteria evolve over the course of sampling after investigators returned to the data to explore new ideas?
Interventions/Exposures/Outcomes

• What considerations should we apply to methods and results?
Therapy Study

Did intervention and control groups start with the same prognosis?
- Were patients randomized?
- Was randomization concealed?
- Were patients in the treatment and control group similar with respect to known prognostic variables?

Was prognostic balance maintained during study?
- Were participants, researchers, and outcome assessors blinded to group allocation throughout?

Was prognostic balance maintained at study completion?
- Was follow-up complete?
- ITT analysis?

Was trial stopped early?
Diagnostic Test

• Did investigators compare the test to an appropriate, independent reference standard?
 – Was the reference standard acceptable?
 – Were the test and standard independent?
 – Were the test and standard results assessed blindly?
• Were those interpreting the test and reference standard blind to the other results?
 – Is the test result interpretation subjective? Expectation bias?
• Did investigators perform the same reference standard to all patients regardless of the results of the test under investigation?
 – Was a different reference standard applied to subjects testing negatively?
Cost-Effectiveness Study

• What viewpoint is used to evaluate costs and consequences (patient, hospital, third-party payer, or society at large)?
• What outcomes are being compared? Are costs or charges being evaluated?
• Where are estimates coming from and are they realistic?
• Did investigators adopt a sufficiently broad viewpoint?
• Are results reported separately for patients whose baseline risks differ?
• Were costs measured accurately?
• Did investigators consider the timing of costs and consequences?
Qualitative Study

• Is data collection comprehensive? Iterative data collection and analysis?
• Were the data appropriately analyzed and the findings adequately corroborated?
• Was theoretical saturation achieved and did data collection and analysis yield meaningful descriptions of social phenomena?
Therapy Study

- How large was the treatment effect?
- How precise was the estimate of the treatment effect?
- How can I apply the results to patient care?
 - Study patients similar to my patient?
 - Were all patient important outcomes considered?
 - Are the likely treatment benefits worth the potential harms and costs?
Diagnostic Test

- Will the reproducibility of the test result and its interpretation be satisfactory in my setting?
 - Consider if test has intraobserver or interobserver variability?
- Are the results applicable to my patients?
- Will the results change my management?
 - What are the test and treatment thresholds for the health condition to be detected?
 - Are the test LRs high or low enough to shift posttest probability across a test or treatment threshold?
- Will the patients be better off as a result of the test?
 - Will patient care or outcomes differ for different test results?
- Will anticipated changes do more harm than good?
Prognosis Study

- How large is the likelihood of the outcomes events in specified time period?
- How precise are the estimates of likelihood?
- Were the study patients and their management similar to those in my practice?
- Was the follow-up sufficiently long?
- Can I use the results in the management of patients in my practice?
Qualitative Study

• How evocative and thorough is the description? Does the data tell a story?
• Is the theory comprehensive, coherent, and appropriate?
• What are the concepts included in the theory?
• Does it make sense? Are concepts well developed?
• Does it fit with what we understand about the field? Are the results relevant?
• Do results in a report help each party (investigator, patient, reader) make sense of a social phenomena?
• Does this study teach me something that will help me understand my patients differently?
• Will it change my interactions in similar clinical situations in the future?
Surrogate Endpoints

• Is there a strong, independent, consistent relationship between the surrogate endpoint and the clinical endpoint?
• Strength of the study design: Relative Risk vs Odds Ratio, Cohort vs Case controlled study
• Is there evidence from other trials that improvement in the surrogate end point has consistently led to improvement in the target outcome?
• Is this population similar to the population I take care of?
• Are the likely treatment benefits worth the potential harm and costs? Overtreatment is not without risk
Screening

• What are the benefits?
 – Absolute risk reduction, Relative risk reduction, Number needed to treat
• What are the harms?
 – complications arising from investigation (screening test);
 – adverse effects of treatment;
 – adverse effects of labeling and early diagnosis;
 – anxiety generated by the investigations and treatment; and
 – costs and inconvenience incurred during investigations and treatment.
• How do benefits and harms compare in different people and with different screening strategies?
 – Risk of disease (Benefits change with risk of disease – eg age)
 – Screening interval – time sensitive
 – Test characteristic
• What is the effect of individuals' values and preferences?
 – Patient decision aids - Provide high quality balanced information about difficult decisions
 – Examples – Down Syndrome; Commercial drivers – strong economic incentives
• What is the effect of uncertainty associated with the evidence?