An image of the Charlotte R. Bloomberg Children's Center and Sheikh Zayed Tower
 
 

Richard J. Rivers, MD, PhD

Richard J. Rivers, MD, PhD

Chief of Anesthesia for the Wilmer Eye Institute
Associate Professor of Anesthesiology and Critical Care Medicine
Associate Professor Ophthalmology Department

Department of Anesthesiology and Critical Care Medicine
Johns Hopkins University School of Medicine
600 N. Broadway
Smith Building, Room 4041
Baltimore, MD 21287
410-502-1798

Dr. Richard Rivers' primary interest is vascular communication. He is actively studying microcirculation physiology to determine how metabolic demands are signaled between the tissue and the vascular network and along the vascular network itself. To conduct his work, Dr. Rivers uses a technique called intravital fluorescence microscopy, which enables him to measure the blood flow within a single artery, vein, or capillary. Further, with micropipettes, specific agonists and antagonists can be applied directly to the blood vessel to determine the effect on blood flow in real time.

Currently, Dr. Rivers is working to determine the role for inwardly rectifying potassium channels (Kir) 2.1 and 6.1 in signaling along the vessel wall, as well as the role of gap junctions. One of his initiatives is to develop viral vectors to use as tools to study the promoters that are specific for cell types in the vessel wall. The vectors are used to downregulate proteins such as the potassium channels and gap junctions to determine the effect on vascular function. Dr. Rivers is excited to have discovered that using hyaluronidase to break down the extracellular matrix enhances viral expression. In the future, Dr. Rivers may use RNA interference (RNAi) as another method for downregulating the proteins. He is also just beginning to test mice with specific gene deletions in his experimental models.

Ultimately, Dr. Rivers hopes that a better basic understanding of the microcirculation will lead to a better comprehension of disease processes, such as the angiogenesis that occurs in cancer and circulatory dysfunction associated with diabetes. This knowledge at the molecular level could enable the development of specific drugs that can target these processes and limit disease progression.

Learn more about Dr. Richard Rivers

Dr. Rivers' Biomedical Research Bio

Learn more about Biomedical Research

Learn more about The Wilmer Eye Institute at Johns Hopkins

 
 

Grand Rounds
Calendar and Webcasts

Grand Rounds take place Thursdays at 7 AM in Hurd Hall.

8/28: "Perioperative Management of Anti-Platelet Therapy" – Nauder Faraday, MD
Watch webcast >>

9/4: Eighth Robert A. Abraham, M.D. Endowed Lecture: "Post-Cesarean Pain Management: Past, Present, and Future" – Brendan Carvalho, MBBCh, FRCA, MDCH
Watch webcast >>

9:11: Patient-Based Learning Discussion – Tracey Smith Stierer, MD

9/18: "Biological Targets For The Treatment Of Traumatic Brain Injury" – Courtney Robertson, MD
Watch webcast >>

"Pediatric Anesthesia Neurotoxicity" – David Mintz, MD
Watch webcast >>

"ACCM - Innovation in Academic Medicine" – Mark Rogers, MD
Watch webcast >>

Archived webcasts >>

 

Out of State and International Patients

Make a Gift

 

 
 
 
 
 

© The Johns Hopkins University, The Johns Hopkins Hospital, and Johns Hopkins Health System, All rights reserved.

Legal Disclaimer