Find a Research Lab

Enter a research interest, principal investigator or keyword

Displaying 1 to 10 of 74 results for brain

Show: 10 · 20 · 50

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  • Adam Sapirstein Lab

    Researchers in the Adam Sapirstein Lab focus on the roles played by phospholipases A2 and their lipid metabolites in brain injury. Using in vivo and in vitro models of stroke and excitotoxicity, the team is examining the roles of the cytosolic, Group V, and Group X PLA2s as well as the function of PLA2s in cerebrovascular regulation. Investigators have discovered that cPLA2 is necessary for the early electrophysiologic changes that happen in hippocampal CA1 neurons after exposure to N-methyl-d-aspartate (NMDA). This finding has critical ramifications in terms of the possible uses of selective cPLA2 inhibitors after acute neurologic injuries.

    Research Areas: phospholipases A2, brain, stroke, lipid metabolites, excitotoxicity, brain injury, neurological disorders

  • Aliaksei Pustavoitau Lab

    The Aliaksei Pustavoitau Lab conducts research on models and mechanisms of impaired consciousness in patients who have suffered acute brain injury. Examples of our work include a study on the mechanisms of neurologic failure in critical illness and another on the use of intensivist-driven ultrasound at the PICU bedside. We also have a longstanding interest in patient safety and quality of care in the ICU setting.

    Research Areas: patient safety, brain, consciousness, ICU, brain injury

  • Amit Pahwa Lab

    The Amit Pahwa Lab conducts research on a variety of topics within internal medicine. Our most recent studies have explored misanalysis of urinalysis results, urinary fractional excretion indices in the evaluation of acute kidney injury and nocturnal enuresis as a risk factor for falls in older women. We also investigate cancer diagnostics and treatments. In this area, our recent research has included studying cutaneous shave biopsies for diagnosing primary colonic adenocarcinoma as well as growth inhibition and apoptosis in human brain tumor cell lines using selenium.

    Research Areas: acute kidney injury, cancer, internal medicine, urology

    Principal Investigator

    Amit Pahwa, M.D.

    Department

    Medicine

  • Auditory Brainstem Laboratory

    The overall goal of the Auditory Brainstem Library is to understand how abnormal auditory input from the ear affects the brainstem, and how the brain in turn affects activity in the ear through efferent feedback loops. Our emphasis is on understanding the effects of different forms of acquired hearing loss (genetic, conductive, noise-induced, age-related, traumatic brain injury-related) and environmental noise. We are particularly interested in plastic changes in the brain that compensate for some aspects of altered auditory input, and how those changes relate to central auditory processing deficits, tinnitus, and hyperacusis. Understanding these changes will help refine therapeutic strategies and identify new targets for treatment. We collaborate with other labs in the Depts. of Otolaryngology, Neuroscience, Neuropathology, the Wilmer Eye Institute, and the Applied Physics Laboratory at Johns Hopkins, in addition to labs outside the university to increase the impact and clinical relev...ance of our research. view more

    Research Areas: hearing disorders, compound action potentials, auditory brainstem response, otoacoustic emissions, operation conditions, audiology, acoustic startle modification, hearing, neurology

  • Bakker Memory Lab

    Research in the Bakker Memory Laboratory is focused on understanding the mechanisms and brain networks underlying human cognition with a specific focus on the mechanisms underlying learning and memory and the changes in memory that occur with aging and disease. We use a variety of techniques including neuropsychological assessments, experimental behavioral assessments and particularly advanced neuroimaging methods to study these questions in young and older adults and patients with mild cognitive impairment, Alzheimer’s disease, Parkinson’s disease and epilepsy.

    Through our collaborations with investigators in both basic science and clinical departments, including the departments of Psychiatry and Behavioral Sciences, Psychological and Brain Sciences, Neurology and Public Health, our research also focuses on brain systems involved in spatial navigation and decision-making as well as cognitive impairment in neuropsychiatric conditions such as schizophrenia, eating disorders, obsessiv...e-compulsive disorders, depression and anxiety. view more

    Research Areas: epilepsy, depression, Parkinson's disease, Alzheimer's disease

  • Biophotonics Imaging Technologies (BIT) Laboratory

    Research in the Biophotonics Imaging Technologies (BIT) Laboratory focuses on developing optical imaging and nano-biophotonics technology to reduce the random sampling errors in clinical diagnosis, improve early disease detection and guidance of biopsy and interventions, and improve targeted therapy and monitoring treatment outcomes. The imaging technologies feature nondestructiveness, unique functional and molecular specificity, and multi-scale resolution (from organ, to architectural morphology, cellular, subcellular and molecular level). The nano-biophotonics technologies emphasize heavily on biocompatibility, multi-function integration and fast track clinical translation. These imaging and nano-biophotonics technologies can also be potentially powerful tools for basic research such as for drug screening, nondestructive assessment of engineered biomaterials in vitro and in vivo, and for studying brain functions on awake animals under normal or controlled social conditions.

    Research Areas: drug screening, imaging, brain, nano-biophotonics

    Lab Website

    Principal Investigator

    Xingde Li, Ph.D.

    Department

    Biomedical Engineering

  • Brain Cancer Biology and Therapy Lab

    The goal of the Johns Hopkins Brain Cancer Biology and Therapy Laboratory is to locate the genetic and genomic changes that lead to brain cancer. These molecular changes are evaluated for their potential as therapeutic targets and are often mutated genes, or genes that are over-expressed during the development of a brain cancer. The brain cancers that the Riggins Laboratory studies are medulloblastomas and glioblastomas. Medulloblastomas are the most common malignant brain tumor for children and glioblastomas are the most common malignant brain tumor for adults. Both tumors are difficult to treat, and new therapies are urgently needed for these cancers. Our laboratory uses large-scale genomic approaches to locate and analyze the genes that are mutated during brain cancer development. The technologies we now employ are capable of searching nearly all of a cancer genome for molecular alterations that can lead to cancer. The new molecular targets for cancer therapy are first located by l...arge scale gene expression analysis, whole-genome scans for altered gene copy number and high throughput sequence analysis of cancer genomes. The alterations we find are then studied in-depth to determine how they contribute to the development of cancer, whether it is promoting tumor growth, enhancing the ability for the cancer to invade into normal tissue, or preventing the various fail-safe mechanisms programmed into our cells. view more

    Research Areas: brain cancer

    Lab Website

    Principal Investigator

    Gregory Riggins, M.D., Ph.D.

    Department

    Neurosurgery

  • Brain Science Institute (BSi)

    The Brain Science Institute (BSi) brings together both basic and clinical neuroscientists from across the Johns Hopkins campuses. The BSi represents one of the largest and most diverse groups in the university. The BSi's mission is to solve fundamental questions about brain development and function and to use these insights to understand the mechanisms of brain disease. This new knowledge will provide the catalyst for the facilitation and development of effective therapies. The goals of our research are to foster new programs in basic neuroscience discovery; initiate a translational research program that will develop new treatments for brain-based diseases; and encourage collaboration, interdisciplinary teams, and new thinking that will have a global influence on research and treatment of the nervous system.

    Research Areas: brain, neuroscience, neurology, nervous system

    Lab Website

    Principal Investigator

    Jeffrey Rothstein, M.D., Ph.D.

    Department

    Neurology

  • Brown Lab

    The Brown Lab is focused on the function of the cerebral cortex in the brain, which underlies our ability to interact with our environment through sensory perception and voluntary movement. Our research takes a bottom-up approach to understanding how the circuits of this massively interconnected network of neurons are functionally organized, and how dysfunction in these circuits contributes to neurodegenerative diseases like amyotrophic lateral sclerosis and neuropsychiatric disorders, including autism and schizophrenia. By combining electrophysiological and optogenetic approaches with anatomical and genetic techniques for identifying cell populations and pathways, the Brown Lab is defining the synaptic interactions among different classes of cortical neurons and determining how long-range and local inputs are integrated within cortical circuits. In amyotrophic lateral sclerosis, corticospinal and spinal motor neurons progressively degenerate. The Brown Lab is examining how abnormal ...activity within cortical circuits contributes to the selective degeneration of corticospinal motor neurons in an effort to identify new mechanisms for treating this disease. Abnormalities in the organization of cortical circuits and synapses have been identified in genetic and anatomical studies of neuropsychiatric disease. We are interested in the impact these abnormalities have on cortical processing and their contribution to the disordered cognition typical of autism and schizophrenia. view more

    Research Areas: autism, neurodegenerative diseases, brain, electrophysiology, ALS, schizophrenia, cerebral cortex, optogenetics

    Lab Website

    Principal Investigator

    Solange Brown, M.D., Ph.D.

    Department

    Neuroscience

  • C. David Mintz Lab

    Researchers in the C. David Mintz Lab seek to better understand the specific methods by which anesthesia can impair a patient’s brain development. Recent studies have investigated the ways in which anesthetics interfere with axon guidance in developing mouse neocortical neurons via a GABAA receptor mechanism, as well as the method by which anesthetics interfere with the polarization of developing cortical neurons.

    Research Areas: anesthesia, brain development, neurology

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5